TU

TECHNISCHE UNIVERSITAT WIEN

[ATP /tuwien.at

AGM?3P Extensions
Manual

G0N

Research Group J. Fidler
Institut fiir Angewandte und Technische Physik
Vienna University of Technology

Werner Scholz
9426502

October 1998

CONTENTS

Contents

1 Introduction

2 User manual

3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

Compiling AGM®®
Running AGM®®
The new magnetization problem
Domains
New variables oo oo
New commands L.
Error estimation, refinement and interpolation
Example scripts

Programmer’s manual

3.1
3.2
3.3
3.4
3.5

Data structures, control flags and macros
Adding variables and commands 0oL
Files in the extend directory
Files in the mag directory
Modifications of other AGM? source files

1 INTRODUCTION 3

1 Introduction

The ADAPTIVE GRID MANAGER by Jiirgen Bey provides a set of problem
independent tools and a complete working environment for the adaptive nu-
merical solution of partial differential equations in three space dimensions.

AGM?P creates the finite element meshes and manages all data necessary
for the calculations. Its main purpose is the refinement of the mesh according
to the refinement algorithm described in [Bey95|. Consequently only problem
dependent parts such as the mathematical model or error estimators have
to be implemented. The manual of AGM?P [Bey94] describes all problem
independent features in detail. Hence, this manual describes only extensions
and new features.

2 User manual

2.1 Compiling AGM?®*"

Before compiling AGM?3P it is necessary to modify the makefile. The vari-
able APPL gives the name of the application. Currently the convection diffu-
sion (CD) and the magnetization application (MAG) are available. BIN stands
for the target directory for the executable and EXE for the name of the ex-
ecutable. b or x is prepended for the batch and X window version, respec-
tively, and the name of the application is appended (e.g. xagm5MAG, bagmbMAG,
xagm5CD). If the symbol EXTEND is defined using the variable for compiler op-
tions COPTS, the application independent extensions, which are described in
section 2.6, will be compiled and linked. More details on variables and X win-
dow libraries can be found in chapter 1.3.2 of the AGM®® manual [Bey94|.

The X window version of AGM?3P with graphical user interface is compiled
with make xagm or simply make. The function main is expected in mainx.c
in the subdirectory of the selected application.

The batch version version is compiled with make bagm. The function
main is expected in mainb.c in the subdirectory of the selected application.

2.2 Running AGM?®"

The X window version

The graphical user interface of AGM3P is described in section 1.4 of the
AGM?P manual [Bey94]. It has not been modified.

2 USER MANUAL 4

The batch version

Currently, only for the magnetization application a batch version is available.
AGM?®P searches for three script files in the current working directory.
First, pre.agm is executed, then fem.agm and finally post.agm. The syntax
of all standard commands can be found in the AGM®® manual [Bey94] and
that of all extended and modified commands in section 2.6 of this manual.

First, the preprocessing commands specified in pre.agnm (e.g. open a new
document, define the FE mesh) are executed. The second script fem.agm
could do the refinement and coarsening and at the end call itself using the
commmand execute fem.agm. AGM?>” exits this recursive call as soon as the
internal BreakFlag is set true. The vemcall command uses this mechanism.
Finally, the postprocessing as defined by post.agm is done. If one or more
script files are missing, AGM?3P tries to continue with the next.

As a result, AGM?P stays alive from the beginning until the end of the
calculations and mesh manipulation. During idle time, the operating system
(e.g. Unix) should set AGM?®P in sleeping mode and move it to the swap space
on hard disk to save memory. Thus, the current finite element mesh is always
available and both refinement and coarsening of the mesh are possible. If the
mesh was exported, AGM3P terminated, restarted later on and the new mesh
imported, it would not be possible to coarsen the mesh any more, because
the multigrid structure has been lost.

Another possiblity is saving the error files, which contain information
about the elements to be refined. These files can be reloaded after restarting
AGM?P. If the same values for refinement and coarsening tolerance are used
after each restart, the complete mesh can be rebuilt. A set of sample scripts
is given in figures 1 and 2.

open test_document cube magnetization multigrid
impbvertex sim.bve
impivertex sim.ive
impelements sim.ele

Figure 1: Sample pre.agm script

2.3 The new magnetization problem

This problem has no solving capabilities. It just provides a “clean” environ-
ment without the original convection diffusion problem supplied by Bey.

2 USER MANUAL)

set refinetol = 0.1
set coarsentol = 0.01
imperror sim.err.1
estimate

refine

expgeom sim.off.1

set refinetol = 0.05
set coarsentol = 0.002
imperror sim.err.2
estimate

refine

expgeom sim.off.2

expvertices sim.nod.2
expelements sim.ele.2

Figure 2: Sample fem.agm script

2.4 Domains

There are six different domains available for the magnetization problem (cf.
figure 3). In addition it is possible to manipulate domains of any shape, if a
tetrahedral finite element mesh is available. As their boundary is covered by
triangles this general type of domain is called triabnd. It is even possible to
refine and coarsen elements of disconnected meshes. This is useful if a finite
element mesh of two distinct objects, which have no element and no vertex in
common, is used. However, the projection of boundary midnodes to curved
surfaces is not possible, since this would require an analytical description.

Cube
The cube is one of the standard domains provided by AGM?3P. A detailed
description can be found in [Bey94| in section 2.4.4 on page 28.

Hexahedron

The hexahedron has a quadratic base and an aspect ratio (height:base) of
2:1. It has been implemented for testing purposes. In order to manipulate

2 USER MANUAL 6

the mesh of a general hexahedron it is advisable to project the vertices of a
hexahedron onto a unit cube and use that domain within AGM?3P.

Pentahedron

The pentahedron was created to test the algorithms of AGM?P for compati-
bility with segments (surface planes) of triangular shape.

Sphere

The sphere is another standard domain provided by AGM?3P. Its description
can be found in [Bey94] in section 2.4.4 on page 28.

Pipe

The s-shaped pipe is another standard domain provided by AGM?3P. It has
been introduced in version 1.2 of AGM?P for which no updated documenta-
tion is available, yet.

Tube

The cylindrical tube is another standard domain provided by AGM?*P. It has
been introduced in version 1.2 of AGM?P for which no updated documenta-
tion is available, yet.

Arbitrary shape

The magnetization problem also provides commands to import domains of
any shape and manipulate them. The domain has to be defined in a Ge-
omView OFF file which consists of the boundary nodes and the boundary
triangles of the tetrahedral mesh. The inner vertices can be imported using
impivertex and the elements using impelements. There is also a converter
(util/out20ff) for neutral files (as exported by Patran), which generates
the GeomView file, a file of the inner vertices and a file of the elements. See
the description of impdomain in section 2.6 for further details.

2.5 New variables
estimator [etamax |

The current error estimator used by the estimate command. Default is the
etamax estimator (cf. section 2.7).

2 USER MANUAL

11

&
@

"back2"

d
M

< | “front2"

(b) Hexahedron (¢) Pentahedron (d) Sphere

(a) Cube

RIS

N

==

NAVAS

=
ASS

IAAVASSVASy,

—

=<

SN

A&

1=

AR\,

AN

NN T7AYARNY

SN
(

N\

=SK
S
B XX

N
K
y

=

%
N
N

A

Ly
e
N4

&
Z
7%
7

(g) Arbitrary domain

Tube

)

(

ipe

(e) P

1S

Available doma

Figure 3

2 USER MANUAL 8

refinetol [0.5]

A parameter to select elements for refinement. It is used by several estima-
tors. Its exact meaning depends on the estimator defined by the variable
estimator (cf. section 2.7).

coarsentol [0.1]

A parameter to select elements for coarsening. It is used by several estima-
tors. Its exact meaning depends on the estimator defined by the variable
estimator (cf. section 2.7).

2.6 New commands
Application independent commands

These commands are implemented in extend/extend.c.

test

This is a dummy command which can be used for anything. Only the function
TestCommand in extend.c has to be adapted to one’s needs.

Function : TestCommand

Purpose : Dummy command for testing purposes
Input : int argc - number of arguments
char *xargv - arguments
Remark : Syntax : test
impbvertex filename

Create new boundary vertices. This command expects a file in which each
line starts with the vertex id. The following columns are expected to be valid
arguments for the bvertex command. The vertex ids are checked against
the ids assigned to the new vertices by AGM®P. The vertices are numbered
consecutively starting with id 0.

Function : ImpBvertexCommand

Purpose : Import the real world coordinates of all boundary vertices
from a file (.bve) with the following structure:
id {segnum u v}+

Input : int argc - number of arguments
char *xargv - arguments

Remark : Syntax : impbvertex filename

2 USER MANUAL 9

impivertex filename

Create new inner vertices. The first column gives the vertex id. The second,
third, and fourth column of the file give the x-, y-, and z-coordinates of the
new vertices respectively. The ids given in the file are checked against the
ids assigned to the new vertices by AGM3P. Usually, this command is called
after initializing a new problem with a certain domain and possibly creating
new boundary vertices with impbvertex. Consequently, the highest id is
given by the number of boundary vertices of the domain (eight in the case of
cube and hexahedron, six for a pentahedron, and three for a sphere; cf. fig.
3) plus the number of additional boundary vertices minus one (the lowest id
is zero). If the domain is imported by impdomain, the number of boundary
vertices depends on the domain, of course.

Function : ImpIvertexCommand

Purpose : Import the real world coordinates of all inner vertices
from a file (.ive) with the following structure:
id x-coordinate y-coordinate z-coordinate

Input : int argc - number of arguments
char *xargv - arguments

Remark : Syntax : impivertex filename

impelements filename

Create new elements. The first, second, third, and fourth column of the file
give the ids of the four vertices of each element (cf. element command).

Function : ImpElementsCommand

Purpose : Import the ids of the four vertices of all elements
which form the finest triangulation
i.e. those which were not refined any further and therefore
have no sons to a file (.ele) with the following structure
id_of_first second third fourth_vertex

Input : int argc - number of arguments
char *xargv - arguments

Remark : Syntax : impelements filename

expvertices filename

Export the real world coordinates of all vertices to a file. In each line of
the file there are the id, x, y and z-coordinates of a vertex with a precision
of 9 digits. The file is created or overwritten as in all other commands for
exporting data.

Function : ExpVerticesCommand

2 USER MANUAL 10

Purpose : Export the real world coordinates of all vertices
to a file (.knt) with the following structure:
id x-coordinate y-coordinate z-coordinate

Input : int argc - number of arguments
char *xargv - arguments

Remark : Syntax : expvertices filename

expelements filename

Export the identifiers of the four vertices of each element contained in the
finest triangulation. The file is created or overwritten. In each line of the
file there are the id of first, second, third, fourth vertex. The order of output
lines represents the order of elements in the list they are stored in.

Function : ExpElementsCommand

Purpose : Export the ids of the four vertices of all elements
which form the finest triangulation
i.e. those which were not refined any further and therefore
have no sons to a file (.ijk) with the following structure
id_of_first second third fourth_vertex

Input : int argc - number of arguments
char *xargv - arguments
Remark : Syntax : expelements filename cf. ExpVerticesCommand

expboundary filename

Export the vertices and faces of the boundary. The output file contains
information about the vertices and faces on the boundary in the following
format: id of first, second, third vertex of a boundary face.

Function : ExpBoundaryCommand
Purpose : Export the ids of the vertices of all boundary faces to a
file (.bnd) of the following structure
id_of_first second third_vertex_of_boundary_face
number of lines given by number_of_sides

Input : int argc - number of arguments

char *xargv - arguments
Remark : Syntax : expboundary filename cf. ExpVerticesCommand
expgeom filename

Export the finest triangulation in GeomView format. All vertices, but only
the boundary triangles are exported.

Function : ExpGeomCommand
Purpose : Export the coordinates of all boundary vertices and the
ids of the vertices of all boundary faces to a

2 USER MANUAL 11

file (.off) of the following structure (geomview format)
OFF
number_of_vertices number_of_sides 0
x-coordinate y-coordinate z-coordinate
. number of lines given by number_of_vertices
3 id_of_first second third_vertex_of_boundary_face
e number of lines given by number_of_sides
Input : int argc - number of arguments

char *xargv - arguments
Remark : Syntax : expgeom filename cf. ExpVerticesCommand

Commands for the magnetization application
impdomain filename

Import a domain of arbitrary shape. The domain has to be defined in a file
in GeomView format. Only boundary vertices and triangular elements of the
surface may appear in the file. Two lines of comments containing the size of
the bounding box guarantee optimal rendering in the X window version. If
they are omitted, default values will be used (center in (0,0,0) and a bounding
cube with edge length 2).

Function : ImpDomainCommand
Purpose : Import the coordinates of all boundary vertices and the
ids of the vertices of all boundary faces from a
file (.off) of the following structure (geomview format)
OFF
number_of_vertices number_of_sides 0
maximum max_x max_y max_z
minimum min_x min_y min_z
x-coordinate y-coordinate z-coordinate
. number of lines given by number_of_vertices
3 id_of_first second third_vertex_of_boundary_face
.. number of lines given by number_of_sides
Input : int argc - number of arguments

char *xargv - arguments
Remark : Syntax : impdomain filename
impelements filename

Create new elements. The first column gives the element id, the second the
property id, the third, fourth, fifth and sixth column of the file give the ids
of the four vertices of each element (cf. element command).

Function : MagImpElementsCommand
Purpose : Import the ids of the four vertices of all elements
which form the finest triangulation

2 USER MANUAL 12

i.e. those which were not refined any further and therefore
have no sons to a file (.ele) with the following structure
elemid propid id_of_first second third fourth_vertex

Input : int argc - number of arguments
char *xargv - arguments

Remark : Syntax : impelements filename

imperror filename

Import the estimated error and store it in the data structure of the corre-
sponding element. The first token in each line is the element identifier, the
second token the error. Only elements of the finest triangulation, which have
no sons, can be assigned an error. Thus, the mesh must not be manipulated
between the execution of expelements and imperror.

Function : ImpErrorCommand

Purpose : Save the estimated error in the data structure of each
element.
The element id corresponds to the line number minus 1
of the file created by ExpElementsCommand
The following file structure is expected:
element_id error

Input : int argc - number of arguments
char *xargv - arguments

Remark : Syntax : imperror filename

impsol filename

Import the magnetization vectors and store them in the data structure of the
corresponding vertices. In the first column of the input file the vertex id, in
the second, third, and fourth the components of the magnetization in x-, y-,
and z-direction, respectively, are expected.

Function : ImpSolCommand

Purpose : Save the magnetization vector in the data structure of each
vertex.
The following file structure is expected:
vertex_id Mx My Mz

Input : int argc - number of arguments
char *xargv - arguments

Remark : Syntax : impsol filename

expsol filename

Export the solution of each vertex to a file. Each line contains the normalized
magnetization vector and the vertex id increased by one. While the output

2 USER MANUAL 13

file is created or overwritten the solution is also printed in the text window
of AGM?*Pfor X window. If a vertex does not have a valid solution, a warning
is printed in the text window.

Function : ExpSolCommand

Purpose : Export the magnetization stored in the data structure of
the vertices to a file with the following structure:
vertex_id Mx My Mz

Input : int argc - number of arguments
char *xargv - arguments

Remark : Syntax : expsol filename

expelements filename

Export the identifiers of the four vertices of each element contained in the
finest triangulation. The file is created or overwritten. In each line of the file
there are the element id, property id, id of first, second, third, fourth vertex,
0, 0. The trailing zeros are for compatiblity reasons. The order of output
lines represents the order of elements in the list they are stored in. The
elements are not necessarily numbered consecutively, because many “father”
elements, which have been refined, do not belong to the finest triangulation.
Therefore their sons or even grandsons, which have higher ids, are saved in
the file.

Function : MagExpElementsCommand

Purpose : Export the ids of the four vertices of all elements
which form the finest triangulation
i.e. those which were not refined any further and therefore
have no sons to a file (.ijk) with the following structure
elemid propid id_of_first second third fourth_vertex 0 0

Input : int argc - number of arguments

char *xargv - arguments
Remark : Syntax : expelements filename cf. ExpVerticesCommand
vemcall filename

This command could be used to automatically call vecmesh and vecu. How-
ever, this is not very flexible and therefore not recommended.

Function : VemcallCommand

Purpose : Call vecmesh and vecu from AGM

Input : int argc - number of arguments
char *xargv - arguments
char xargv[1] - name of the simulation (e.g. cube)
cube.exc - file containing the exit code

Remark : Syntax : vemcall cube

2 USER MANUAL 14

vertexinfo voum
elementinfo elnum

These two commands have been improved to display information contained
in the data structures of vertices and elements. After the output by the orig-
inal routines additional information is printed. If the magnetization vector
stored in the user data structure of the vertex with id vnum is marked valid,
vertexinfo displays it. elementinfo prints the error stored in the element’s
data structure if it is marked valid.

Function : MagVertexInfoCommand

Purpose : Overwrite the kernel vertexinfo command
In addition to the output of the standard vertexinfo command
print the current solution (magnetization) if it is valid.

Input : int argc - number of arguments
char *xargv - arguments
Remark : Syntax : vertexinfo id

Function : MagElementInfoCommand

Purpose : Overwrite the kernel elementinfo command
In addition to the output of the standard vertexinfo command
print the error if it is valid.

Input : int argc - number of arguments
char *xargv - arguments
Remark : Syntax : elementinfo id

2.7 Error estimation, refinement and interpolation

For the refinement of the finite element mesh certain elements have to be
selected and split into smaller elements as described in [Bey95] and [Scho97] .
The selection is based on an estimated error, which is imported and stored in
the data structure of the elements by the imperror command. The estimator
has the task to decide which elements have to be refined. Currently five
estimators are available.

The user can choose one of them by setting the variable estimator to the
appropriate name. The tolerance has a different meaning for each estimator.
Its default values for the refinement (0.5) and coarsening (0.1) tolerance can
be changed using the variables refinetol and coarsentol. If estimate is
invoked without any arguments the values stored in the variables refinetol
and coarsentol will be handed over to the estimator. Else the values given
as a arguments will override the variables. estimate invokes the estimator
specified by estimator, which will mark all elements necessary. If an irreg-
ular element would be selected, its father is marked for regular refinement,
because Bey’s refinement algorithm prohibits the refinement of an irregular
element.

2 USER MANUAL 15

Function : EstimateCommand

Purpose : Estimate error and mark elements

Input : int argc - number of arguments (incl. its own name)
char **argv - array of arguments

Output : BOOL - FALSE for any error

Remark : Syntax : estimate <refinetol> <coarsentol>

e markall estimator

All leaf (i.e. unrefined) elements will be marked for regular refinement.
The command mark all provides a more convenient way to refine the
whole mesh.

e abs estimator

All elements whose error is greater (smaller) than refinetol (coarsentol)
will be marked for refinement (coarsening).

e etamax estimator

If the error n of an element of the finest triangulation complies with n >
(Mmax - refinetol), it is marked for regular refinement. If it complies
with 7 < (9max - coarsentol), it is marked for coarsening.

e eps estimator

Those elements for which /N - n? > refinetol (/N - 7? < coarsentol),
where 7 is the error of the current element and N the total number of
finite elements, is true, are marked for regular refinement (coarsening).

o diff estimator

First the difference between the two magnetization vectors at the ends
of each edge of the current element is calculated. The length of each of
these six difference vectors is computed and finally summed up. If the
result is greater (smaller) than refinetol (coarsentol) the element
is marked for refinement.

After execution of estimate the desired elements are marked for refine-
ment and coarsening. If too few or too many elements are marked or another
estimator is chosen, estimate can be called again, which will first clear all
marks and evaluate the elements’ errors again.

The refinement itself can be effected by the command refine. It will
insert all necessary elements and vertices. However, these newly inserted
vertices contain no valid magnetization vector yet. It can be computed with
interpolate (implemented in mga.c). This command interpolates linearly
between the magnetization vectors at the ends of the edge which is bisected

3 PROGRAMMER’S MANUAL 16

by the inserted vertex and stores the result in the new vertex. Finally, the
length of the magnetization vector is changed to 1 if it is greater than 10720,
Otherwise it remains unchanged, which leaves it in a rather unphysical state.
The magnetization vector can be very short under two circumstances. Either
the magnetization vectors that are used for the interpolation are of almost
equal length and point in opposite directions or they are very short them-
selves.

In the first case the new vertex lies between two different domains in a
domain wall. This could either be a Bloch wall (magnetization vector rotates
in the plane of the wall) or a Néel wall. Since the interpolated vector is very
short there is no “domain wall”, rather an area with vanishing magnetization.
The second case should not occur since the length of all magnetization vectors
computed by vecu have unit length.

Function : InterpolateCommand

Purpose : Interpolate solution for new vertices

Input : int argc - number of arguments (incl. its own name)
char *xxargv - array of arguments

Output : BOOL - FALSE for any error

Remark : Syntax : interpolate

2.8 Example scripts

Example scripts for the pentahedron, hexahedron and the arbitrary domain
of figure 3 can be found in the subdirectory demos.mag. To test these scripts
AGM?P has to be compiled for the magnetization application. However, they
can be used with both, the X window and batch version.

3 Programmer’s manual

3.1 Data structures, control flags and macros

The user data structures and the macros for accessing them are defined in
magproblem.h, the control flags and their macros in mag.h.

Elements

Each element can contain information about the error which was estimated
for this element. Whenever a new element is created (function CreateElement
in memory.c), heap space is allocated for the user data structure. For the
magnetization problem this is one variable of type COORD (cf. misc/misc.h),
which stores the estimated error. However, there is no “default” error for a

3 PROGRAMMER’S MANUAL 17

new element. Therefore it is marked to contain no valid error. The indicator
for this property is the first bit of the element’s control word. If it is set (1)
the error is valid, if it is cleared (0) the error is not valid. Then the value
of the error can be imported using the imperror command (cf. section 2.6),
which automatically sets the corresponding bit in the control word. The lat-
ter is done by the macro SET_ERROR_OK. ERROR_OK can be used to determine
the current status and RESET_ERROR_OK to reset the error bit. The error
itself can be accessed by the ERROR macro.

Vertices

In the user data structure of each vertex a magnetization vector can be
stored if a magnetization problem is initialized. The third bit of the control
word indicates if the values for the magnetization vector are valid or not.
There are three macros SET_SOL_OK, RESET_SOL_OK and SOL_O0K They work
analogously to the corresponding macros for an element’s error. The three
components of the magnetization vector are accessible by the macros M1, M2
and M3. All geometrical and numerical data belonging to one vertex are stored
in its data structure. Therefore vertex and node are used equivalently. On
the contrary, Bey’s convection-diffusion problem of AGM?P does distinguish
between nodes and vertices: Geometrical and graphical information is stored
in the vertices’ data structure whereas numerical data are contained in the
nodes’ data structure.

3.2 Adding variables and commands
Variables

1. Define the name of the new variable in extend.h:
For example #define REFINETOL_VARNAME "refinetol"

2. Define its default value:
#define DEFAULT_REFINETOL 0.5

3. Declare it as an extern variable:
extern double RefineTol;

4. “Create” it with CreatexxxrVariable in extend.c:InitExtension,
where (zzz) is the desired type. There are macros for several types
defined in misc/shell.h.

3 PROGRAMMER’S MANUAL 18

Commands

1. Define the name of the new command in extend.h:
For example #define TEST_CMDNAME '"test".

2. Implement its function in extend.c:
BOOL TestCommand (int argc, char x*argv);

3. “Create” it with
CreateCommand (TEST_CMDNAME, TestCommand,NULL) ;

3.3 Files in the extend directory
extend/extend.c

Herein all commands for data import and export are implemented.

extend/extend.h

Definition of new command names, error messages and default values for
variables.

3.4 Files in the mag directory
mag/extdom.c

This file contains the parameter projection functions for boundary midnode
projection, boundary segment function for the hexahedron, pentahedron and
arbitrary domains and initialization functions for all new domains.

mag/extdom.h

Definition of new domain names.

mag/mag.c

In this file all estimators, the new estimate, vertexinfo, elementinfo and
interpolate commands are implemented

mag/mag.h

Definition of new command names (implemented in mag. c), estimator names
and macros for control word access.

3 PROGRAMMER’S MANUAL 19

mag/mag.msg

Error messages of initialization routines.

mag/magdomain.c

This is only a copy of cd/domain.c to separate the applications (convection
diffusion and magnetization) properly.

mag/magdomain.h

This is only a copy of cd/domain.c for the above reasons.

mag/magproblem.c

Various initialization routines.

mag/magproblem.h

Macros for acces of new data structures.

mag/mainb.c

This is the main program for the batch version of magnetization application.

mag/mainx.c

The main program for the X window version is only a copy of cd/mainx.c.

3.5 Modifications of other AGM?3" source files

In several files, function prototypes, standard include files and options for
conditional compilation have been added. The source should now compile
without any errors or warnings with the GNU C compiler.

cd/cd.c

Added option for conditional compilation of application independent exten-
sions.

cd/cd.h

Corrected misspelling (FVAssembleRHSElement instead of FVAssembler-
RHSElement).

3 PROGRAMMER’S MANUAL 20

cd/domain.h

Boundary segment functions need the segment id as the first argument. This
modification was necessary to cope with arbitrary domains with many bound-
ary segments (=boundary triangles).

gui/gui.c

At the end of GUI_InsertElementsCommand the call of GUI_UpdateCommand
has been removed to speed up the import of many elements with impelements.

gui/plot3d.c

Boundary segment functions need the segment id as the first argument.

kernel/cmd.c

Boundary segment functions need the segment id as the first argument.
InsertElementCommand must not check for COMPLETE(theMG). Then it is
possible to handle disjoint meshes.

kernel/memory.c

Boundary segment functions need the segment id as the first argument.
CreateMultiGrid must not complain about unused vertices when handling
disjoint meshes.

kernel/objects.h

The definition of unsigned long constants (the masks for control word access)
was modified for the 64-bit alpha processor.

The bndsegment structure was extended to save the coordinates of one corner
and the vectors to the other two.

misc/misc.h

The definition of unsigned long constants (the masks for control word access)
was modified for the 64-bit alpha processor.

REFERENCES 21

References

[Bey94] J. Bey, AGM®P Manual. Tiibingen, 1994

[Bey95| J. Bey, Tetrahedral Grid Refinement. In Computing 55, p. 355,
Springer, 1995

|[Kiku86] N. Kikuchi, Finite Element Methods in Mechanics. Cambridge Uni-
versity Press, Cambridge, 1986

[Schr91] T. Schrefl, J. Fidler, Numerical simulation of magnetization reversal
in hard magnetic materials using a finite element method. J. Magn.
Magn. Mater. 111, p. 105, 1992

[Bagn91| A. Bagnérés-Viallix, P. Baras, J.B. Albertini, 2D and 3D calcula-
tions of micromagnetic wall structures using finite elments. IEEE
Trans. Magn., Vol. 27, No. 5, 1991

[Scho97] W. Scholz, Verfeinerung von Finite-Element-Gittern. Projektarbeit,
1997

