Projektarbeit iiber Dauermagnetwerkstoffe
LV-Nr. 133.016

Verfeinerung von
Finite-Element-Gittern

ausgefiihrt am Institut fiir Angewandte und Technische Physik
der Technischen Universitat Wien

unter der Anleitung von Univ.-Prof. Dr. Josef Fidler
und Dipl.-Ing. Dr. Thomas Schrefl

durch

Werner Scholz
Margaretengiirtel 62-64/63/3
1050 Wien
Matr.Nr. 9426502

Wien, Februar 1997

CONTENTS

3.1 Regular Refinement,
3.2 TIrregular Refinement
3.3 The refinement algorithm

Contents

1 Introduction

2 Finite element meshes

3 Refinement

4 AGMB3D and its extensions

4.1 Overview.
4.2 User manual . . .

4.2.1 The new magnetization problem
4.2.2 Newwvariables Lo Lo,
4.2.3 Newcommands
4.2.4 Error estimation, refinement and interpolation
425 Restrictions o o000
4.3 Programmer’s manual
4.3.1 Data structures, control flags and macros
4.3.2 Adding variables and commands

Application

5.1 Hard magneticcube 0oL

5.2 Simulation results

Conclusion

13
13
15

18

1 INTRODUCTION 3

1 Introduction

Numerical computer simulations of magnetization processes help understand-
ing and improving the properties of magnetic materials. New alloys can be
“designed” and their specific behaviour predicted. Their magnetic proper-
ties are described by the dynamic (time dependent) micromagnetic Landau-
Lifshitz-Gilbert equations. Finite element methods provide a reliable tech-
nique for the solution of these partial differential equations. They are very
flexible concerning material parameters, desired accuracy, and material in-
homogeneities.

The error caused by the discretization of the problem can be estimated
during the calculations. It will be small in areas where the magnetization is
uniform and larger where the magnetization changes quickly. An appropriate
local refinement strategy will add elements in those areas with large errors.
Consequently the discretization error will be reduced and more accurate re-
sults obtained.

It is the purpose of this paper to present an implementation of a suitable
refinement algorithm and an application, the simulation of a hard magnetic
cube.

2 Finite element meshes

The sample under consideration has to be descretized in the three dimensions
of space. This is achieved by its division into sufficiently small finite elements,
which can have the shape of cubes, hexahedrons or tetrahedrons.

Usually the initial triangulation is a uniform mesh, consisting of a suitable
number of elements and nodes. If no refinement is applied, this initial mesh
is of great importance for the whole simulation. A small number of elements
and nodes limits the achievable accuracy and reliability and implies poor
approximation near singularities and internal or boundary layers. On the
other hand if a finer mesh is chosen, accuracy can be improved significantly
but at the same time the systems of equations enlarge, which may lead to
intolerably long computation times.

There are several methods to improve the results and almost preserve the
calculations’ complexity (cf. [Kiku86|). First the nodes of the finite element
grid can be relocated which leads to a higher density of nodes in areas with
larger integration errors. The number of elements remains fixed but they are
deformed. This may lead to undesired shapes and deteriorating convergence
rates. As an alternative the degrees of polynomials used for the interpolation
of the desired function can be changed.

3 REFINEMENT 4

Finally, the number of unknowns can be optimized by fitting the cor-
responding discretization to the present approximate solution. In regions
where improved accuracy is needed, the underlying discretization mesh is
refined and new elements and vertices are inserted. (In this paper vertex and
node are used as synonyms.) However, where the solution is expected to be
smooth, it is possible to coarsen the mesh. To decide whether an element
has to be refined or not the error which originates from the discretization of
integrations has to be estimated for each element.

Methods which use this technique are called multi-level methods. They
have been proven to be of optimal or nearly optimal complexity for the
solution of discrete systems arising from partial differential equations.

3 Refinement

3.1 Regular Refinement

The regular refinement of a tetrahedron called the
“father” is done by subdividing it into smaller sub-
tetrahedra called “sons”. The first step is to find the

midnodes of all edges of the father and to connect
those on a common face. Then the four sons at the
corners, which are obviously congruent with their

father and have equal volume, can be “cut off”. The

remainder, an octahedron, has to be divided again, but this can be done in
several ways. It can be cut along three different planes, which have the shape
of parallelograms. Cutting along two of them generates four sons which are
no longer congruent with the father. This strategy is equivalent to the in-
sertion of one edge, namely the cutting edge of the above planes. However,
the wrong choice can lead to degenerated elements whereas the choice of
the shortest of the three possible edges will minimize the maximum mea-
sure of degeneracy of the sons (|Bey95|, p. 362). If the initial elements have
non-obtuse faces, this strategy produces at most three congruence classes.

N

Figure 1: Cut planes of the octahedron

3 REFINEMENT)

3.2 Irregular Refinement

In order to restrict the refinement of elements to certain areas of the finite
element mesh, the triangulation has to be closed after the regular refine-
ment of the desired elements. Otherwise there would be so called hanging
nodes, which are difficult to handle in calculations. The “smooth” transition
from regular elements to regularly refined elements is done by the irregular
elements. They are generated by a procedure called the green closure.

An edge is called refined if at least one of the neighbouring elements
which share this edge is refined regularly. This means that a new midnode
is inserted in the middle of the edge. Each tetrahedron has 6 edges which
can be either refined or not. Therefore there exist 2° = 64 edge refinement
patterns. One of them leaves all edges unrefined and a second refines all
edges, which occurs if the element itself or all its neighbours are refined
regularly. Considering symmetry arguments the remaining 62 patterns can
be divided into 9 different types. Using these 9 types, any triangulation can
be closed. For practical reasons it is sufficient to use four different types
and refine those elements regularly which would need one of the missing
refinement rules.

DL D DD

Figure 2: Irregular refinement patterns for the green closure

3.3 The refinement algorithm

As mentioned above the initial triangulation must not include elements with
obtuse faces in order to preserve stability. If an appropriate finite element
mesh is created, the finite element calculations can be performed to produce
the desired results and select certain elements for regular refinement. All
selected regular or regularly refined elements are refined as described above.
Irregular elements must not be refined because this could lead to degenerated
elements and disturb the calculations’ stability. As a consequence irregular
elements and their “brothers”, who belong to the same father, are removed
and their father is refined regularly.

After performing this first refinement called the red closure, the triangu-
lation is closed with irregular elements (green closure). If none of the four
irregular refinement patterns is applicable for a certain element, it is refined

4 AGM?P AND ITS EXTENSIONS 6

regularly and its neighbouring elements are new candidates for the green
closure.

This procedure is applied until all selected elements are refined and the
whole grid is closed properly.

4 AGM?3P and its extensions

4.1 Overview

The ADAPTIVE GRID MANAGER by Jiirgen Bey provides a set of problem
independent tools and a complete working environment for the adaptive nu-
merical solution of partial differential equations in three space dimensions.

AGM3P creates the finite element grids and manages all data necessary
for the calculations. Its main purpose is the refinement of the grid accord-
ing to the refinement algorithm described in section 3. Consequently only
problem dependent parts such as the mathematical model or error estima-
tors have to be implemented. The manual of AGM3P describes all problem
independent features in detail. Hence, the following sections describe only
extensions and new features.

4.2 User manual

4.2.1 The new magnetization problem

This problem has been implemented only for the cube domain but has no
solving capabilities. It just provides a “clean” environment without the orig-
inal convection diffusion problem supplied by Bey.

4.2.2 New variables

estimator | etamax |

The current error estimator used by the estimate command. Default is the
etamax estimator (cf. section 4.2.4).

tolerance [0.5]

The parameter used by several estimators. Its exact meaning depends on the
estimator defined by the variable estimator (cf. section 4.2.4).

4 AGM?P AND ITS EXTENSIONS 7

4.2.3 New commands
test

This is a dummy command which can be used for anything. Only the function
TestCommand in extend.c has to be adapted to one’s needs.

expvertices [<filename> |

Export the real world coordinates of all vertices to a file. If no filename
is given, the list of all vertices and their coordinates is printed in the text
window of AGM3P. Else the file is created or overwritten and simultaneously
the information is printed in the text window (in a more user friendly format,
not the format of the output file). In each line of the file there are the x, y
and z-coordinates of a vertex with a precision of 4 digits following the decimal
point.

Since the program mesh33 assumes that the line number corresponds with
the identifier of the vertex, the lines have to be in the correct order. However,
the vertices are stored in a double linked list in the order of their creation.
A new vertex is inserted at the beginning and its identifier is derived from
the last id which was assigned to a vertex. This number is stored in the
variable VertexCounter in the data structure of the multigrid. It does
not indicate the total number of vertices but is a simple counter, which is
updated whenever a new vertex is created. This happens for example if the
grid is refined. Though, the counter is not decreased if the grid is coarsened
and a vertex is removed. As long as the grid is not coarsened the vertices are
numbered consecutively. It is assumed that this the case. Then the output
starts with the last vertex in the list. It was created first and therefore has id
0. The previous vertex is reached by the PRED macro. For security reasons an
assert command checks if the output is in the correct order and numbered
consecutively.

Furthermore mesh33 expects the centre of the
coordinate system to lie inside the domain. By def-
inition vertex no. 0 has the coordinates (0, 0, 0).
Consequently all vertices are moved by (—%, —%, —%)
before being saved to file. However, the unchanged
coordinates are indicated in the text window.

Figure 3: Unit Cube

4 AGM?P AND ITS EXTENSIONS 8

expelements | <filename> |

Export the identifiers of the four vertices of each element contained in the
finest triangulation. If a filename is given the file is created or overwritten.
In any case the list is printed in the text window.

The vertices are numbered from 0 onwards by AGM3P. Since the iden-
tifiers are expected to start from 1 they are increased by one for the output
file. The ids printed in the text window remain unchanged. The order of
output lines represents the order of elements in the list they are stored in.
The imperror command assumes that this order is not changed. There are
two reasons why the element’s identifier is not taken into account. First, it
would be quite inefficient to scan the whole list for each element to get them
in the right order. Secondly, there are many “father” elements which are
important for the multi-grid algorithm but do not belong to the finest trian-
gulation. Other programs expect the elements of the mesh to be numbered
consecutively, which is impossible with the internal ids since these “father”
elements have to be left out.

expboundary [<filename> |

Export the vertices and faces of the boundary. If a filename is given, the out-
put file contains information about the vertices and faces on the boundary in
a format which can be interpreted by omega33 and geomview. As mentioned
above the vertices have to be moved by (—%, —3, —3).
imperror <filename>

Import the estimated error and store it in the data structure of the corre-
sponding element. The first token of each line is the element identifier, the
second token the error. However, the element id is ignored. The line number
of the input file has to correspond with the position of the element in the list
of elements. The error in the first line is stored in the first element in the list
that was not refined and therefore belongs to the finest triangulation. The
error in the second line is stored in the second element in the list that was
not refined, and so on. This is exactly the order in which the quadruplets
of vertex ids were stored by expelement and which has to be preserved.
Consequently the grid must not be manipulated between the execution of
expelements and imperror. If the number of lines is smaller than the num-
ber of elements contained in the finest triangulation, a warning will appear
in the text window.

4 AGM?P AND ITS EXTENSIONS 9

impsol | <filename> |

Import the magnetization vectors and store them in the data structure of
the corresponding vertices. The file structure is described in the source code
of extend.c.

If no filename is given, a default magnetization will be created: All ver-
tices lying above the plane through (0,0, %) parallel to the z-y-plane will be
assigned the magnetization vector (-1, 0, 0). All vertices lying in or below
that plane will be assigned a magnetization vector (+1, 0, 0). Thus two do-
mains are created. The upper one is magnetized in negative x-direction, the
lower in positive z-direction.

expsol <filename>

Export the solution of each vertex to a file. Each line contains the value of
magnetization in the three directions of space and the vertex id increased
by one. Here the same problems with the sequence of vertices occur as in
expvertices. While the output file is created or overwritten the solution is
also printed in the text window of AGM3P. If a vertex does not have a valid
solution, an appropriate message is printed in the text window.

impsigma <filename>

Import the parameter sigma for the etamax estimator and store it in the
global variable tolerance. The value has to be the first token in the fourth
line of the input file.

wait

Wait until a key is pressed. This is useful in scripts for AGM3P if the
execution of commands should be paused. If [Ctrl-Brk] is pressed the
script is terminated. Any other key resumes.

vertexinfo <vnum>
elementinfo <elnum>

These two commands have been improved to display information contained in
the data structures of vertices and elements. After the output by the original
routines additional information is printed. If the magnetization vector stored
in the user data structure of the vertex with id <vnum> is marked valid,
vertexinfo displays it. elementinfo prints the error stored in the element’s
data structure if it is marked valid.

4 AGM?P AND ITS EXTENSIONS 10

4.2.4 Error estimation, refinement and interpolation

For the refinement of the finite element grid certain elements have to be se-
lected and split into smaller elements as described in section 3. The selection
is based on an estimated error, which is imported and stored in the data
structure of the elements by the imperror command. The estimator has the
task to decide which elements have to be refined. Currently five estimators
are available.

The user can choose one of them by setting the variable estimator to
the appropriate name. The tolerance has a different meaning for each esti-
mator. Its default value 0.5 can be changed using the variable tolerance.
If estimate is invoked without any arguments the value stored in the vari-
able tolerance will be handed over to the estimator. Else the value given
as an argument will override the variable tolerance. estimate invokes the
estimator specified by estimator, which will mark all elements necessary. If
an irregular element would be selected, its father is marked for regular re-
finement, because Bey’s refinement algorithm prohibits an irregular element
being refined.

e markall estimator

All leaf (i.e. unrefined) elements will be marked for regular refinement.
The command mark all provides a more convenient way to refine the
whole grid.

e abs estimator

All elements whose error is greater than the given tolerance will be
marked.

e etamax estimator
If the error n of an element of the finest triangulation complies with
N > (Nmax - tolerance), it is marked for regular refinement.

e eps estimator

Those elements for which /N - n? > tolerance, where 7 is the error
of the current element and N the total number of finite elements, is
true, are marked for regular refinement.

o diff estimator

First the difference between the two magnetization vectors at the ends
of each edge of the current element is calculated. The length of each of
these six difference vectors is computed and finally summed up. If the

4 AGM?P AND ITS EXTENSIONS 11

result is greater than the allowed tolerance the element is marked for
refinement.

After execution of estimate the desired elements are marked for refine-
ment. If too few or too many elements are marked or another estimator is
chosen, estimate can be called again, which will first clear all marks and
evaluate the elements’ errors again.

The refinement itself can be effected by the command refine. It will
insert all necessary elements and vertices. However, these newly inserted
vertices contain no valid magnetization vector yet. It can be computed with
interpolate (implemented in mga.c). This command interpolates linearly
between the magnetization vectors at the ends of the edge which is bisected
by the inserted vertex and stores the result in the new vertex. Finally, the
length of the magnetization vector is changed to 1 if it is greater than 10~2°.
Otherwise it remains unchanged, which leaves it in a rather unphysical state.
The magnetization vector can be very short under two circumstances. Either
the magnetization vectors that are used for the interpolation are of almost
equal length and point in opposite directions or they are very short them-
selves.

In the first case the new vertex lies between two different domains in a
domain wall. This could either be a Bloch wall (magnetization vector rotates
in the plane of the wall) or a Néel wall. Since the interpolated vector is very
short there is no “domain wall”, rather a non-magnetized area. The second
case should not occur since the length of all magnetization vectors computed
by vecu have length 1.

4.2.5 Restrictions

Currently only the unit cube is available for the magnetization problem.

4.3 Programmer’s manual

4.3.1 Data structures, control flags and macros

The user data structures and the macros for accessing them are defined in
magproblem.h, the control flags and their macros in mag.h.

Elements

Each element can contain information about the error that was estimated for
this element. Whenever a new element is created (function CreateElement
in memory.c), heap space is allocated for the user data structure. For the

4 AGM?P AND ITS EXTENSIONS 12

magnetization problem this is one variable of type COORD (cf. misc/misc.h),
which stores the estimated error. However, there is no “default” error for a
new element. Therefore it is marked to contain no valid error. The indicator
for this property is the first bit of the element’s control word. If it is set (1)
the error is valid, if it is cleared (0) the error is not valid. Then the value of
the error can be imported using the imperror command (cf. section 4.2.3),
which automatically sets the corresponding bit in the control word. The lat-
ter is done by the macro SET_ERROR_OK. ERROR_OK can be used to determine
the current status and RESET_ERROR_OK to reset the error bit. The error
itself can be accessed by the ERROR macro.

Vertices

In the user data structure of each vertex a magnetization vector can be
stored if a magnetization problem is initialized. The third bit of the control
word indicates if the values for the magnetization vector are valid or not.
There are three macros SET_SOL_OK, RESET_SOL_OK and SOL_O0K They work
analogously to the corresponding macros for an element’s error. The three
components of the magnetization vector are accessible by the macros M1, M2
and M3.

All geometrical and numerical data belonging to one vertex are stored
in its data structure. Therefore vertex and node are used equivalently. On
the contrary Bey’s convection-diffusion problem of AGM?3P does distinguish
between nodes and vertices: Geometrical and graphical information is stored
in the vertices’ data structure whereas numerical data are contained in the
nodes’ data structure.

4.3.2 Adding variables and commands

Variables

1. Define the name of the new variable in extend.h:
For example #define TOLERANCE_VARNAME "tolerance"

2. Define its default value:
#define DEFAULT_TOLERANCE 0.5

3. Declare it as an extern variable:
extern double Tolerance;

4. “Create” it with CreaterxzxVariable in extend.c:InitExtension,
where (zzz) is the desired type. There are macros for several types
defined in misc/shell.h.

5 APPLICATION 13

Commands

1. Define the name of the new command in extend.h:
For example #define TEST_CMDNAME '"test".

2. Implement its function in extend.c:
BOOL TestCommand (int argc, char x*argv);

3. “Create” it with
CreateCommand (TEST_CMDNAME, TestCommand , NULL) ;

5 Application

5.1 Hard magnetic cube

In order to test the new technique the magnetization of a hard magnetic
cube has been calculated and the new refinement algorithm applied. The
cube’s material parameters are typical of a NdyFe;4B-magnet. The length
of its edges is 200 nm. The initial magnetization consists of two domains:
The upper half of the cube is magnetized parallel to the z-axis in negative
direction, the lower half in positive direction. Consequently there is a domain
wall in between. It can be examined in greater detail by refining the mesh
in this area.

First a new document (with the name demo) is created and initialized
with the magnetization problem on the cube domain using the multigrid
algorithm.

open demo cube magnetization multigrid

Then the cube is triangulated using Kuhn’s method. (See figure 3 for the
corners’ numbering.)

element 0 1 3 7
element 0 1 5 7
element 0 2 3 7
element 0 2 6 7
element 0 4 5 7
element 0 4 6 7

After refining the whole grid two times, the cube consists of 6 - 43 = 384
tetrahedrons and 43 +42 +4 -5+ 52 = 125 vertices. The initial triangulation
and the twice refined mesh are shown in figure 5.1. With impsol (cf. section
4.2.3) the two desired domains of magnetization are initialized.

5 APPLICATION 14

Figure 4: Initial triangulation and second refinement

The initial triangulation should be as coarse as possible, just fine enough
to resolve the shape of the domain and the coefficient jumps in the problem
under consideration. However, it can be expected that the grid will have to
be refined at the domain wall, which will be very thin in a hard magnetic
material (typically some nanometres). Therefore we start with a sufficiently
fine grid. Now the files containing all information necessary for vecu can be
generated:

expvertices cube.knt
expelements cube.ijk
expboundary cube.off
expsol cube.mag

Then mesh33, material2, omega33, matrix2, and vecmesh32 do the pre-
processing before vecu33 can be invoked. Following vecu’s calculations the
results have to be imported in AGM?P, Figure 7 shows the total energy
stored in the magnetization of the cube as a function of the simulation time.

impsol cube.inp
imperror cube.ind

These commands will assign to each vertex its calculated magnetization vec-
tor and to each element its estimated error.

The estimated error has to be evaluated and for each element decided if
it has to be refined or not. For this task there are several estimators, which
are described in section 4.2.4.

set estimator = etamax
set tolerance 0.5 estimate

5 APPLICATION 15

Figure 5: First local refinement around the domain wall

NASSSSSANAY

INDSSSS NN
DNNSSSSNN

NSNS

NASSSSSNAY
NASSSSSANAN

NNSSSSSSN

S
N

Figure 6: Second local refinement

All marked elements are coloured blue (boundary faces) and green (cut
plane). In figure 5 the faces of all marked elements of the left cube appear
darker than the others. Then refine starts the refinement algorithm de-
scribed in previous sections and creates the triangulation shown on the right
of figure 5. It consists of 318 vertices and 1,312 elements. However, the new
vertices contain no valid magnetization vector yet. These have to be created
by interpolation with the command interpolate.

Finally, the output files can be generated as described above, the new
calculation started, and the grid refined again. The result shown in figure 6
is a grid of 1,774 vertices and 8,867 elements.

5.2 Simulation results

The total energy stored in the magnetization of the cube as a function of the
simulation (CPU) time (i.e. the time necessary for the simulation) is shown
in figure 7.

During the first 320 seconds the total energy decreases very fast and
reaches a minimum value of about —0.672. Then it oscillates slightly and
remains stable after 1,000 seconds. Another 640 seconds later the finite ele-
ment mesh is refined locally as shown in figure 5, but this could have already

5 APPLICATION 16

-0.64

-0.66 |
— 15¢ refinement
ﬁg
]
> -0.68 |
5
E
= 2nd refinement
S 00\ 1
&5

-0.72 +

-0.74 ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 25,000 50,000 75,000 100,000

simulation (CPU) time [s]

Figure 7: Total energy as a function of the simulation time

been done 1,000 seconds after the beginning of the simulation when the to-
tal energy remained constant. Immediately the total energy decreases again.
The finer mesh permits a more accurate simulation and a more realistic mag-
netization, which leads to a lower total energy. After a simulation time of
8,000 seconds it arrives at a minimum of —0.705.

The second refinement is applied after 11,700 seconds. The new magne-
tization vectors originating from the inserted vertices and the interpolation
between their neighbours cause a slightly higher total energy, which can be
observed as a small step in figure 7. Resuming the simulation, the total energy
remains constant at first. After 20,000 seconds it decreases monotonously to
its final value of —0.73374. It is reached after 150,000 seconds

Another interesting aspect is the relation between the simulation time
and the simulated time shown in figure 8. It indicates how much time and
computing power are necessary for the simulation.

5 APPLICATION 17

0.20

ond refinement

0.16 +

0.12 ™ |

18t refinement

0.08 H]

simulated time [ns]

0.04]

0.00

0 30000 60000 90,000 120,000 150,000
simulation (CPU) time [s]

Figure 8: Simulated time as a function of the simulation time

Within some seconds of computing time a simulated time of 0.12 ns has
passed. There are two reasons for this behaviour: First, the finite element
grid consists of 125 vertices and 384 elements only, which makes the calcula-
tions quite simple and fast. Secondly the magnetization and the total energy
reach very quickly constant values. Therefore the time step resulting from
the discretization of time can be enlarged leading to a rapid development of
the simulated time.

After the first local refinement the grid consists of 318 vertices and 1,312
elements. Consequently the simulation becomes more complicated and slower.
Finally, 1,774 vertices and 8,867 elements assemble the finite element grid.

Yet, it is not possible to decide if the domain wall is of Bloch or Néel
type. Some estimated 50,000 elements would be necessary to find the right
answer for this hard magnetic cube.

6 CONCLUSION 18

6 Conclusion

The local refinement of finite element meshes proved to be an appropri-
ate method to increase the accuracy and reliability of numerical simulations
based on finite element methods. If the initial mesh is generated carefully
AGMS3P and its new features provide reliable tools for error estimation and
refinement.

An interface between AGM3P and vecu has been created by the imple-
mentation of new commands. They save all graphical data of the finite ele-
ment mesh in a format compatible with vecu and its preprocessing programs.
Moreover they give access to the results obtained by vecu and prepare the
mesh for further calculations.

The simulation of a hard magnetic cube served as a test for both the
program and the technique itself. While the new commands showed their
reliability, the program and the technique remain to be “refined”. Currently
finite element meshes are available only for cubic domains. Yet, AGM3D s
supplied with several error estimators and flexible input- and output-routines
which need no modification if new domains are added.

Another problem is the fast growing number of elements and vertices if
the grid is refined. As a consequence the calculations become very complex
and slow. Up to around 2,000 elements results can be obtained within reason-
able time. If the grid is refined another time it may end up with some 10, 000
elements. However, as computing power and speed are improving, these lim-
its are pushed forward. Alternatively special computers may be used. Finite
element methods require the solution of large systems of linear equations.
They can be solved very efficiently with vector computers which are opti-
mized for the manipulation of vectors and matrices. The NEC SX4 B/2 at
the Centre for Computing Services at the Technical University Vienna is a
good example for this type of machines. It is ranked among the 20 fastest
vector computers in the world.

Another problem which has been mentioned in [Bagn91| may occur. The
refinement takes place in areas of major interest such as domain walls. It
should improve accuracy and reliability of the simulation though it should
not influence the sample and its properties. However, it has been observed
that domain walls may move from finer areas to coarser areas of the grid.
This behaviour can be explained by the exchange energy, which is in a finer
grid different from that in a coarser grid and therefore does influence the
calculations.

During the simulation of the hard magnetic cube it was not possible
to verify these facts but further research work will have to take them into
consideration.

REFERENCES 19

References
[Bey94] J. BEY: AGM®P Manual. Tiibingen, 1994

[Bey95| J. BEY: Tetrahedral Grid Refinement. In Computing 55, p. 355,
Springer, 1995

|[Kiku86] N. KikucHI: Finite Element Methods in Mechanics. Cambridge
University Press, Cambridge, 1986

[Sch91] T. SCHREFL, J. FIDLER: Numerical simulation of magnetization
reversal in hard magnetic materials using a finite element method.
J. Magn. Magn. Mater. 111, p. 105, 1992

[Bagn91| A. BAGNERES-VIALLIX, P. BARAS, J.B. ALBERTINI: 2D and 3D
calculations of micromagnetic wall structures using finite elments.
IEEE Trans. Magn., Vol. 27, No. 5, 1991

