next up previous
Next: The Effective Field Up: Dynamic Modelling Previous: Dynamic Modelling

Equation of Motion

The torque $\mbox{\bf l}$ is given by the rate of change of angular momentum $\mbox{\bf g}$ with time

\begin{displaymath}
\frac{d\mbox{\bf g}}{dt} = \mbox{\bf l} \quad , \quad
 \vert\mbox{\bf g}\vert=\hbar \; .
 \end{displaymath}

Moreover the torque acting on a magnetic moment $\mbox{\bf m}$ in a magnetic field $\mbox{\bf H}$ is given by

\begin{displaymath}
\mbox{\bf l}=\mbox{\bf m} \times \mbox{\bf H} \; .\end{displaymath}

The gyromagnetic ratio $\gamma_0$ is defined by the ratio of magnetic moment to angular momentum, which are antiparallel due to the negative charge of electrons.

\begin{displaymath}
\gamma_0=\frac{m}{\vert\mbox{\bf g}\vert} \quad , \quad
 \mbox{\bf g}=-\frac{\mbox{\bf m}}{\vert\gamma_0\vert}
 \end{displaymath}

Therefore we obtain

\begin{displaymath}
\frac{d\mbox{\bf m}}{dt}=-\vert\gamma_0\vert\mbox{\bf m} \times \mbox{\bf H} \; .\end{displaymath}

An orbiting electron with charge e=-e0 gives rise to a current I in a loop covering an area F. Its magnetic moment m is given by (SI units)

\begin{displaymath}
m=I \; F=
 \frac{e v}{2r\pi} r^2 \pi=
 \frac{e vr}{2}=
 \fra...
 ...derbrace{m_e vr}_{=\hbar}=
 -\frac{e_0 \hbar}{2 m_e}=
 -\mu_B
 \end{displaymath}

In cgs units $m=\frac{I}{c} \; F \Rightarrow
\mu_B=\frac{e_0 \hbar}{2 m_e c}$.

However, the magnetic moment caused by the spin of an electron is larger. The appropriate gyromagnetic factor $g_s \approx -2$ can be calculated by solving Dirac's equation. However, experiments give $g_s=-2 \cdot 1.001\,159\,652$ , which can be verified using perturbation theory in quantumelectrodynamics.

Finally we can calculate the gyromagnetic ratio

\begin{displaymath}
\gamma_0=\frac{g_s \mu_B}{\hbar} \approx
 1.759\cdot 10^{11} \ \frac{\mbox{rad}}{\mbox{Ts}}
 \end{displaymath}



Werner Scholz
12/19/1997