next up previous contents
Next: 2.3 Galerkin Discretization Up: 2. The Finite Element Previous: 2.1 Poisson Problem   Contents


2.2 The Weak Formulation

The weak formulation of the boundary value problem $(P)$ is then obtained by the multiplication of Eq. (2.1) with $w \in H_D^1(\Omega):=\{w \in H^1(\Omega)\vert w=0 \mathrm{ on } \Gamma_D\}$ and integration over $\Omega$:

\begin{displaymath}
-\int_\Omega \Delta u \cdot w  d{v}  = \int_\Omega f \cdot w  d{v}  \quad.
\end{displaymath} (2.4)

Integration by parts gives
\begin{displaymath}
\int_\Omega \nabla u \cdot \nabla w  d{v}  -
\int_{\Gamm...
...\partial n} \cdot w  d{a}  =
\int_\Omega f \cdot w  d{v} 
\end{displaymath} (2.5)

and substitution of the boundary conditions and rearrangement leads to
\begin{displaymath}
\int_\Omega \nabla u \cdot \nabla w  d{v}  =
\int_\Omega f \cdot w  d{v}  +
\int_{\Gamma_N} g \cdot w  d{a}  \quad.
\end{displaymath} (2.6)

Now we incorporate the (possibly inhomogeneous) Dirichlet boundary conditions
\begin{displaymath}
\int_\Omega \nabla u \cdot \nabla w  d{v}  -
\int_\Omega...
...t w  d{a}  -
\int_\Omega \nabla u_D \cdot \nabla w  d{v} 
\end{displaymath} (2.7)

and substitute the homogeneous solution $v \in H^1_D(\Omega)$, which is given by $v=u-u_D$ and satisfies $v=0$ on $\Gamma_D$. This gives us the weak formulation of the Poisson problem $P$ which reads: Find $v \in H^1_D(\Omega)$ such that
\begin{displaymath}
\int_\Omega \nabla v \cdot \nabla w  d{v}  =
\int_\Omega...
...{a}  -
\int_\Omega \nabla u_D \cdot \nabla w  d{v}  \quad.
\end{displaymath} (2.8)


next up previous contents
Next: 2.3 Galerkin Discretization Up: 2. The Finite Element Previous: 2.1 Poisson Problem   Contents
Werner Scholz 2003-06-08