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Mesh refinement in FE-micromagnetics for multi-domain Nd2Fe14B particles
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Abstract

Adaptive mesh refinement of finite element meshes significantly improves the solution of

3D micromagnetic calculations and optimizes the number of unknowns. In dynamic

simulations domain wall movement requires partial refinement and coarsening. The

windowing technique is applied to obtain a better solution at the newly inserted elements.

Nucleation sites of reverse domains can be detected and the grid suitably refined.
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Micromagnetic calculations of samples with arbitrary geometries or irregular

microstructures are efficiently made using finite element methods (FEM). The accuracy of

its solutions depends on the discretization of the sample in space. In hard magnetic materials

the magnetization is uniform within magnetic domains whereas it is highly non-uniform in

domain walls, near nucleation sites, vortices or grain boundaries. Rave has shown that the

discretization length has to be comparable to the exchange length A Kd/  [1].

It is desirable to adapt the finite element mesh to the solution and optimize the number of

unknowns. As domain walls can move due to external fields the discretization has to be

adjusted at run-time. The nucleation and expansion of reverse domains is also made easier

by a finer mesh.

This paper introduces a new method for adaptive refinement and coarsening in

micromagnetic finite element calculations. In our 3D simulation we use a magnetic scalar

potential to treat the long-range demagnetizing fields. For its calculations a hybrid finite

element / boundary element method is applied. The time evolution of the magnetization

follows from the integration of the Gilbert equation of motion with critical damping (α=1).

The discretization and time integration error can be estimated during the calculations and

used as an indicator for areas which need to be refined. A very efficient refinement strategy

for tetrahedral meshes has been described by Bey [2].

The top left plot in fig. 1 gives the initial mesh of a Nd2Fe14B platelet with an extension of

200 nm and a thickness of 20 nm. The mesh has been refined around the domain wall. After

calculation of the equilibrium state for zero applied field the domain wall starts to move

under the influence of an applied field of 0.1 times the anisotropy field. The wall collapses as

it reaches the elements of the coarse mesh leading to antiparallel magnetization vectors at

the nodes of a common edge [3]. This structure remains stable because there is no torque on

the magnetization. The local refinement of the finite element mesh inserts new nodes
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within the domain wall and the wall can be resolved on a smaller length scale. Coarsening

of the mesh at the former wall position keeps the total number of finite elements constant.

After insertion of new elements and nodes the magnetization can be interpolated linearly

between the values of the neighboring nodes and normalized. The torque acting on the

magnetization in a narrow band enclosing the new nodes will be considerably higher than

the torque on the remainder of the mesh. Thus, we propose to relax the magnetization of

the new nodes using a submesh containing only elements in a narrow band around the new

nodes. This technique is called windowing [4, 5]. In numerical micromagnetics a similar

approach has been proposed by Lewis and Della Torre [6]. The Gilbert equation is solved

within the computational window. At the boundary Dirichlet conditions for the

magnetization are applied. Since magnetostatic interactions are long-range the scalar

potential is determined on the entire mesh, with the magnetization kept fixed outside the

narrow band. Under the influence of an applied field the domain wall moves. Again a

narrow band technique can be applied to keep track of the domain wall position. The top

right mesh in fig. 1 shows the computational window. After several time steps on this

narrow band, a few integration steps are performed on the entire grid, in order to account

for minor changes of the magnetization within the domains. Then a new computational

window, which follows the movement of the wall, is determined. At the bottom of fig. 1

the finite element mesh after four refinement and coarsening steps is given. The result

clearly shows that the high density region of the mesh moves together with the domain

wall. Simulations using a uniform mesh with the same minimum element size would

exceed the capabilities of our workstations by far.

Mesh 1 in fig. 2 is the initial mesh of a Nd2Fe14B platelet with an extension of 200 nm and a

thickness of 8 nm. Nucleation of reverse domains starts in the corners of the platelet. Three

refinement steps lead to mesh 2. The coercive field has been calculated for the coarse

(mesh 1), the refined (mesh 2) and the fine uniform mesh (mesh 3). Table 1 compares the
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three FE-meshes and the results obtained from the simulations. The smallest element length

of mesh 2 is 2.5 nm which is approximately half the domain wall width. Yet, it contains less

than half the number of elements of mesh 3. The minimum element size of the latter is 4 nm.

The simulation time dropped from 250 h for mesh 3 to 167 h for mesh 2. Furthermore the

coercive field decreases with the element size and is smallest for mesh 2.

The presented method provides a reliable technique to simulate domain wall movement

and nucleation processes with a minimum number of finite elements. Alternate refinement

and coarsening reduces the space discretization error and thus avoids domain wall pinning

on a too coarse grid. Walls can move and domains expand until they reach their true

equilibrium position.
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Table 1

Results for the nucleation problem (meshes of fig. 2)

Mesh Elements Nodes µ0HC (T) CPU time (h)
mesh 1 500 242 6.65 17
mesh 2 11070 2655 6.44 167
mesh 3 25000 7803 6.51 250
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Fig. 1.

Initial mesh, computational window and FE-mesh after four refinement and coarsening

steps.

Fig. 2.

Meshes and magnetization distribution at MZ/MS = 0.93.
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