
IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 5, SEPTEMBER 2003 2513

Fast Boundary Methods for Magnetostatic
Interactions in Micromagnetics

Hermann Forster, Thomas Schrefl, Rok Dittrich, Werner Scholz, and Josef Fidler

Abstract—Fast boundary integration methods are implemented
to increase the efficiency of the calculation of the magnetostatic in-
teraction of magnetic particles. We test the treecode algorithm and
a hierarchical matrices method to improve the original used ma-
trix-vector multiplication with a fully populated matrix. We com-
pare the CPU-time used for the setup phase and for the matrix-
vector multiplication, as well as the required storage.

Index Terms—Fast boundary methods, finite elements, hierar-
chic matrices, micromagnetics, treecode.

I. INTRODUCTION

M ICROMAGNETIC simulations of realistic magnetic
devices require the calculation of the magnetostatic

interactions between distinct magnetic parts. Hybrid finite
element/boundary element (FE/BE) algorithms as originally
proposed by Fredkin and Koehler are very efficient, since they
require no mesh between the particles [1]. This method is
described in Section II. In addition, the FE/BE discretization
allows arbitrarily shaped structures. However, the BE part of
this algorithm leads to a fully populated matrix of size ,
where is the number of boundary nodes. As a consequence,
storage and CPU-time scale with , which causes perfor-
mance problems in structures with high aspect ratio where most
nodes are on the boundary. To overcome this problem, various
techniques to accelerate the BE method have been proposed. In
this paper, we compare three methods:

1) fully populated boundary matrix (Section II);
2) treecode method as used for particle simulations (Sec-

tion III-A);
3) hierarchical matrices built by using the ACA-algorithm

(Section III-B).

II. HYBRID FE/BE METHOD

Within the framework of the FE/BE method, the magnetic
scalar potential is calculated as sum with

for (1)

for (2)

for (3)

Manuscript received January 10, 2003. This work was supported by the Aus-
trian Science Fund under Y132-PHY.

The authors are with the Institute of Solid State Physics, Vienna University
of Technology, A-1040 Vienna, Austria (e-mail: thomas.schrefl@tuwien.ac.at).

Digital Object Identifier 10.1109/TMAG.2003.816458

The integral in (2) is over all the surfacesof magnetic bodies
and is the solid angle subtended byat . Equation

(1) can be solved by a standard FE method. The discretization
of (2) leads to a matrix vector multicplication

(4)

The matrix depends only on the geometry and the FE mesh
and thus has to be computed only once for a given FE mesh in
the so-called setup-phase. However,may change with time
for problems including moving parts.

III. FAST BOUNDARY INTEGRATION METHODS

The application of the FE/BE method as explained in
Section II has many advantages. Only the magnetic bodies
of the considered domains need to be discretized, open
boundary problems pose no additional difficulties, and prob-
lems including motion can be treated elegantly [2]. However,
application of the FE/BE method leads to dense matrices. The
storage requirements and computational costs are of ,
where is the number of unknowns, respectively, the number
of boundary nodes, although the values of most of the elements
in the boundary matrix are small. Clearly, we see that we run
into problems if we increase the size of the used model due to
the limited computational power. Obviously, when dealing with
linear systems of equations, one has optimal efficiency if the
computational amount of work is . For many situations
characterized by a sparse system matrix, optimal solution
algorithms are known.

In this paper, two different fast boundary integration methods
are used to get this advantage. This speeds up the matrix-vector
multiplication of (4), with the boundary matrix ,
which is originally dense.

A. Treecode

In tree algorithms, particles are arranged in a hierarchy of
clusters. When the force on a particular particle is computed,
the interaction exerted by distant groups is approximated by
their lowest multipole moments. In this way, the computational
cost for a complete force evaluation can be reduced to order

[3]. The forces become more accurate if the multi-
pole expansion is carried out to higher order, but the increasing
cost of evaluating higher orders might make it more efficient
to terminate the multipole expansion and instead use a larger
number of smaller tree nodes to achieve a desired force accu-
racy [4]. We will just use dipole approximations. This means we
interpret each boundary element as a dipole having a dipole mo-
ment. So the particles in the magnetostatic problem are dipoles

0018-9464/03$17.00 © 2003 IEEE

2514 IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 5, SEPTEMBER 2003

sitting on the boundary elements. The arising interaction of the
dipoles on a specific boundary node has to be calculated.

We use the Barnes and Hut [5] tree construction. In this
scheme, the domain, which surrounds all dipoles, is hier-
archically partitioned into a sequence of cubes, where each
cube contains eight siblings, each with half the side length of
the parent cube. These cubes form the nodes of an oct-tree
structure. The tree is constructed such that each cube contains
either exactly one dipole, or is parent to further cubes, in which
case the parent cube carries the dipole moments of all the
dipoles that lie inside this cube.

The computation of the interaction between the dipoles pro-
ceeds by walking through the tree and summing up appropriate
contributions from the tree elements. In the tree walk, the dipole
moment of a cell of size is used only if

(5)

where is the distance of the particular point to the center of
mass of the cell and is an accuracy parameter. If a cell fulfills
this criterion, the tree walk along this branch can be terminated,
otherwise it is “opened,” and the walk is continued with all its
siblings. For smaller values of the parameter, the forces will
in general become more accurate, but also more CPU-time con-
suming. is a good choice for the tradeoff between the
advantage in CPU-time due to the clustering and the loss in ac-
curacy.

The tree construction can be made by inserting the dipoles
one after the other in the tree. Once the grouping is completed,
the multipole moments of each cube (if they are parent cells)
can be recursively computed from the moments of its daughter
cubes.

B. -Matrices

Using hierarchic matrices, the fullmatrix is approximated
by a class of matrices (called-matrices [6], where abbrevi-
ates “hierarchical”). These matrices are not sparse in the sense
that there are only few nonzero entries, but they are data sparse
in the sense that these matrices are described by only few data.
The class of -matrices contains certain sparse matrices and
approximates very well full matrices as they arise from integral
operators. It is proposed that the amount of work is almost linear
in [7].

The basic building blocks for -matrices are -matrices
which are low-rank matrices. These matrices form subblocks
of the -matrix. For the determination of the -matrices, we
use theadaptive cross approximation, which approximates the
matrix using an iterative scheme described in [8]. Again, there
is an accuracy parameter. We suggest the use of .

Table I shows a comparison between the different boundary
integration methods with varying accuracy parameters.

IV. GEOMETRY

A model for the test of different fast boundary integration
methods should involve two features:

1) interacting particles, since the FE/BE method does not
need a mesh outside of the particles;

TABLE I
COMPARISON OF THESTRAY FIELD ENERGY E OF A

CUBE FOR DIFFERENT BOUNDARY INTEGRATION METHODS.
THE ANALYTICAL VALUE IS E = 0:16667

Fig. 1. Model system. Surface grid with 966 boundary nodes.

2) high aspect ratio, because the FE/BE method scales with
.

Therefore, a sensor element has been chosen as our test
system. Fig. 1 shows the model. A soft magnetic film (thick-
ness 10 nm) is stabilized by two permanent magnets. The air
gap in between has a size of 5 nm. The permanent magnets
consist of CoPt with , an exchange constant of

J/m, and a magnetocrystalline anisotropy
constant of J/m. The soft magnetic sensor
element in the middle is NiFe, where , the exchange

J/m, and no anisotropy .
To vary the number of boundary nodes, the model is remeshed

with different mesh sizes between 50 and 1.75 nm. This results
in 54 to 31 642 boundary nodes and 96 to 63 272 boundary el-
ements, respectively. Fig. 1 shows the boundary mesh with 996
boundary nodes and 1920 boundary elements.

V. RESULTS

The required storage and the CPU-time for the matrix-vector
multiplication of (4) are compared. Since the boundary matrix

may change with time for problems including moving parts
or changing meshes, we also consider the CPU-time required
for the setup phase.

Fig. 2 shows the storage required during the simulation for
different numbers of boundary nodes. The fullmatrix method
shows the behavior. Obviously, this method is limited by
memory and the computational power. The use of hierarchic ma-
trices reduces the needed storage by 93%. The treecode method
saves additional storage and reaches savings of 98% as com-
pared with the fullmatrix method. The use of these alternative
methods allows the simulation of larger systems.

CPU-time tests with the fullmatrix method are, therefore,
only possible for , because of the dependence
and the limited memory in our workstation. Fig. 3 shows that
both the treecode and the hierarchic matrices approach reduce
the CPU-time of the setup phase as compared with the

FORSTERet al.: FAST BOUNDARY METHODS FOR MAGNETOSTATIC INTERACTIONS IN MICROMAGNETICS 2515

Fig. 2. Storage as a function of the number of boundary nodes.

Fig. 3. CPU-time required for the setup phase.

dependence of the fullmatrix method. The setup phase involves
all operations which are performed only once for a given mesh
and are made before the simulation is started, e.g., the building
of the fullmatrix, the tree, or the building of the hierarchic
matrices. We see that the greatest acceleration can be reached
with the treecode method. In our implementation, the hierarchic
matrices are somewhere in the middle between the fullmatrix
method and the treecode. This may be explained due to the
use of the ACA algorithm for the building of the hierarchic
matrices. The performance of this algorithm is not optimal. The
implementation of the -matrices algorithm might reduce the
required CPU-time for the building of the hierarchic matrices
[9].

Finally, we evaluated the required CPU-time for 1000 matrix-
vector multiplications according to (4) (Fig. 4). Even for a small
problem size, , the hierarchic matrices method
reduces the CPU-time by a factor of 10 as compared with the
multiplication of the fullmatrix. With increasing problem size,
the speedup becomes more significant. The treecode scales

Fig. 4. CPU-time required for 1000 matrix vector multiplications.

with , but the very CPU-time expensive tree search
increases the CPU-time for matrix-vector multiplications for
small problems.

VI. CONCLUSION

Because of the -dependence, the fullmatrix method is not
suitable for large systems. Due to the very short setup-phase,
the treecode method is recommended for moving parts, for
example, recording simulations using a fully discretized head.
Also, short setup-phases are required for changing meshes
as resulting from a mesh refinement algorithm. Perhaps the
use of the matrices algorithm for building the hierarchical
matrices reduces the CPU-time of the setup phase, too. Due
to the time-consuming tree search, the hierarchic matrices
method performs the matrix-vector multiplication in the fastest
way, so, this is the method of choice for the solution of the
Landau–Lifshitz equation on a fixed grid.

REFERENCES

[1] D. R. Fredkin and T. R. Koehler, “Hybrid method for computing demag-
netizing fields,”IEEE Trans. Magn., vol. 26, pp. 415–417, Mar. 1990.

[2] T. Schrefl, H. Forster, M. Schabes, and B. Lengsfield, “Finite element
simulation of head/media interactions in perpendicular recording,” in
Proc. Compumag, J. Webb and D. Giannacopoulos, Eds., Saratoga
Springs, FL, 2003.

[3] A. W. Appel, “An efficient program for many-body simulations,”SIAM
J. Sci. Stat. Comp., vol. 6, pp. 85–103, 1985.

[4] S. L. W. McMillan and S. J. Aarseth, “AnO(n logn) integration
scheme for collisional stellar systems,”Astrophys. J., vol. 414, p. 200,
1993.

[5] J. Barnes and P. Hut, “A hierarchicalO(n logn) force calculation al-
gorithm,” Nature, vol. 324, p. 446, 1986.

[6] W. Hackbusch,Iterative Solution of Large Sparse Systems. New York:
Springer Verlag, 1994.

[7] W. Hackbusch, “A sparse matrix arithmetic based onH-matrices—Part
I: Introduction toH-matrices,”Computing, vol. 62, pp. 89–108, 1999.

[8] S. Kurz, O. Rain, and S. Rjasanow, “The adaptive cross-approximation
technique for the 3D boundary-element method,”IEEE Trans. Magn.,
vol. 38, pp. 421–424, Mar. 2002.

[9] L. Grasedyck and S. Börm, private communication, 2002.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

