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Fast Boundary Methods for Magnetostatic
Interactions in Micromagnetics

Hermann Forster, Thomas Schrefl, Rok Dittrich, Werner Scholz, and Josef Fidler

Abstract—Fast boundary integration methods are implemented ~ The integralin (2) is over all the surfacE®f magnetic bodies
to increase the efficiency of the calculation of the magnetostatic in- (, . and Q(r) is the solid angle subtended byatr. Equation

teraction of magnetic particles. We test the treecode algorithm and (1) can be solved by a standard FE method. The discretization
a hierarchical matrices method to improve the original used ma- . BTN
of (2) leads to a matrix vector multicplication

trix-vector multiplication with a fully populated matrix. We com-
pare the CPU-time used for the setup phase and for the matrix- j i
vector multiplication, as well as the required storage. Uy = Bi;Uy. (4)

Index Terms—Fast boundary methods, finite elements, hierar- The matrixB depends only on the geometry and the FE mesh
chic matrices, micromagnetics, treecode. and thus has to be computed only once for a given FE mesh in
the so-called setup-phase. HowewvBrmay change with time
|. INTRODUCTION for problems including moving parts.

ICROMAGNETIC simulations of realistic magnetic

devices require the calculation of the magnetostatic lll. FAST BOUNDARY INTEGRATION METHODS
interactions between distinct magnetic parts. Hybrid finite The application of the FE/BE method as explained in
element/boundary element (FE/BE) algorithms as originalection Il has many advantages. Only the magnetic bodies
proposed by Fredkin and Koehler are very efficient, since they the considered domains need to be discretized, open
require no mesh between the particles [1]. This method ®undary problems pose no additional difficulties, and prob-
described in Section Il. In addition, the FE/BE discretizatiolems including motion can be treated elegantly [2]. However,
allows arbitrarily shaped structures. However, the BE part application of the FE/BE method leads to dense matrices. The
this algorithm leads to a fully populated matrix of Si2¢ N?), storage requirements and computational costs a@(df?),
whereN is the number of boundary nodes. As a consequengghereN is the number of unknowns, respectively, the number
storage and CPU-time scale withi?, which causes perfor- of boundary nodes, although the values of most of the elements
mance problems in structures with high aspect ratio where masthe boundary matri¥3 are small. Clearly, we see that we run
nodes are on the boundary. To overcome this problem, varionto problems if we increase the size of the used model due to
techniques to accelerate the BE method have been proposedhénlimited computational power. Obviously, when dealing with

this paper, we compare three methods: linear systems o equations, one has optimal efficiency if the

1) fully populated boundary matrix (Section I1); computatipnal amount of work i©(N). For_many _situations_

2) treecode method as used for particle simulations (Se&haracterized by a sparse system matrix, optimal solution
tion l1-A); algorithms are known.

3) hierarchical matrices built by using the ACA-algorithm In this paper, two different fast boundary integration methods
(Section 111-B). are used to get this advantage. This speeds up the matrix-vector

multiplicationU, = BU; of (4), with the boundary matri®,
Il. HYBRID FE/BE METHOD which is originally dense.

Within the framework of the FE/BE method, the magnetig Treecode

scalar potential is calculated as stim= U, + U, with . i ) )
In tree algorithms, particles are arranged in a hierarchy of

AU, =V -J(r) forr € wp (1) clusters. When the force on a particular particle is computed,
1 Ur(r')(r — 1) the interaction exerted by distant groups is approximated by
Ua(r) =~ / de their lowest multipole moments. In this way, the computational

cost for a complete force evaluation can be reduced to order
+ <M _ 1> Ui(r') forreTl (2) O(Nlog N) [3]. The forces become more accurate if the multi-

dm pole expansion is carried out to higher order, but the increasing
AU; =0 forr € wn. (3)  cost of evaluating higher orders might make it more efficient

to terminate the multipole expansion and instead use a larger
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sitting on the boundary elements. The arising interaction of the TABLE |
dipoles on a specific boundary node has to be calculated. COMPARISON OF THESTRAY FIELD ENERGY Eiiray OF A
. . CUBE FOR DIFFERENT BOUNDARY INTEGRATION METHODS
We use the Barnes and Hut [5] tree construction. In this THE ANALYTICAL VALUE IS E.ray = 0.166 67
scheme, the domain, which surrounds all dipoles, is hier-
archically partitioned into a sequence of cubes, where each fullmatrix etfeecgde hierarchic “};‘-
H : N H . : stray € stra;
cube contains eight siblings, each with half the side length of 016452 1700 170.16630 | 0.00001 | 0.1645613
the parent cube. These cubes form the nodes of an oct-tree 0.2 | 0.16482 || 0.0001 | 0.1645613
structure. The tree is constructed such that each cube contains g-g 8-:22‘1)5 03)8} 8‘}2322%3
either exactly one dipole, oris parent t[O further cubes, in which 08 | 0.17091 01 | 0.1645020
case the parent cube carries the dipole moments of all the 1.0 | 0.17286 1 | 0.1643937

dipoles that lie inside this cube.
The computation of the interaction between the dipoles pro- .
. . . 100 nm
ceeds by walking through the tree and summing up appropria / ;
contributions from the tree elements. In the tree walk, the dipol 4
moment of a cell of sizéis used only if Onm

r>1/6 ) \

wherer is the distance of the particular point to the center o. 50 nm 200 nm 50 nm
mass of the cell andlis an accuracy parameter. If a cell fulfills;
this criterion, the tree walk along this branch can be terminated,
otherwise it is “opened,” and the walk is continued with all its . ) .
siblings. For smaller values of the parametethe forces will ~ 2) h|gh aspect ratio, because the FE/BE method scales with
in general become more accurate, but also more CPU-time con- :
suming.d = 0.2 is a good choice for the tradeoff between the 1herefore, a sensor element has been chosen as our test
advantage in CPU-time due to the clustering and the loss in S¥Stem- Fig. 1 shows the model. A soft magnetic film (thick-
curacy. ness 10 nm) is stablllzeq by two permanent magnets. The air
The tree construction can be made by inserting the dipol%gp n between hgs a size of 5 nm. The permanent magnets
one after the other in the tree. Once the grouping is complet&gnsist of CoPtlvlwth]S = 1.25 T, an exchange constant of
the multipole moments of each cube (if they are parent celtd) = 1.6 x 107 J/m, and a magnetocrystalline anisotropy
can be recursively computed from the moments of its daughfnstant ofK, = 4 x 10° J/m. The soft magnetic sensor

1. Model system. Surface grid with 966 boundary nodes.

cubes. element in the middle is NiFe, whete = 1 T, the exchange
A = 1.3 x 10~ J/m, and no anisotropi(, = 0.
B. H-Matrices To vary the number of boundary nodes, the model is remeshed

' _ _ . ] . with different mesh sizes between 50 and 1.75 nm. This results
Using hierarchic matrices, the fullmatriX is approximated in 54 to 31 642 boundary nodes and 96 to 63 272 boundary el-
by a class of matrices (calléd-matrices [6], wher@{ abbrevi- ements, respectively. Fig. 1 shows the boundary mesh with 996

ates “hierarchical”). These matrices are not sparse in the segg@indary nodes and 1920 boundary elements.
that there are only few nonzero entries, but they are data sparse

in the sense that these matrices are described by only few data.
The class ofH-matrices contains certain sparse matrices and
approximates very well full matrices as they arise from integral The required storage and the CPU-time for the matrix-vector
operators. It is proposed that the amount of work is almost ling&#ltiplication of (4) are compared. Since the boundary matrix
in NV [7]. B may change with time for problems including moving parts
The basic building blocks fof{-matrices aréRk-matrices O changing meshes, we also consider the CPU-time required
which are low-rank matrices. These matrices form subbloci¥ the setup phase.
of the H-matrix. For the determination of tHek-matrices, we ~_Fig. 2 shows the storage required during the simulation for
use theadaptive cross approximatiowhich approximates the different numbers of boundary nodes. The fullmatrix method
matrix using an iterative scheme described in [8]. Again, the®ows theN? behavior. Obviously, this method is limited by

V. RESULTS

is an accuracy parameterWe suggest the use ef= 0.001. memory and the computational power. The use of hierarchic ma-
Table | shows a comparison between the different bounddfiFes reduces the needed storage by 93%. The treecode method

pared with the fullmatrix method. The use of these alternative
methods allows the simulation of larger systems.
CPU-time tests with the fullmatrix method are, therefore,
A model for the test of different fast boundary integratiognly possible forN < 10000, because of th&/2 dependence
methods should involve two features: and the limited memory in our workstation. Fig. 3 shows that
1) interacting patrticles, since the FE/BE method does niobth the treecode and the hierarchic matrices approach reduce
need a mesh outside of the particles; the CPU-time of the setup phase as compared withNRe

IV. GEOMETRY
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Fig. 2. Storage as a function of the number of boundary nodes.
Fig. 4. CPU-time required for 1000 matrix vector multiplications.

1500
L ©-® fullmatrix 3 with N -log(N), but the very CPU-time expensive tree search
f B N treecode . 1 increases the CPU-time for matrix-vector multiplications for
: 4 ® hierarchic matrices 1 small problems.

~ 1000 - ]

b : PO VI. CONCLUSION

E - /,// Z Because of théV2-dependence, the fullmatrix method is not

= f « 1 suitable for large systems. Due to the very short setup-phase,

“ 5001 e 7 the treecode method is recommended for moving parts, for
s ,./” 1 example, recording simulations using a fully discretized head.
e o m 1 Also, short setup-phases are required for changing meshes
C ,y* ............... s 7 as resulting from a mesh refinement algorithm. Perhaps the
- o il 1 use of theH? matrices algorithm for building the hierarchical

10000 20000 30000
number of boundary Nodes N

matrices reduces the CPU-time of the setup phase, too. Due
to the time-consuming tree search, the hierarchic matrices
Fig. 3. CPU-time required for the setup phase. method performs the matrix-vector multiplication in the fastest
way, so, this is the method of choice for the solution of the

dependence of the fullmatrix method. The setup phase invohlgd1dau-Lifshitz equation on a fixed grid.
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