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Magnetic Configurations and Phase Diagrams
of Sub-100-nm NiFe Nanorings
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Using the micromagnetics package MAGPAR, we study the ground states of NiFe nanorings with sub-100-nm lateral dimensions, in
zero external field. We solve the Landau–Lifschitz–Gilbert equation for three different initial magnetizations (in plane, out of plane, and
vortex) to obtain the lowest energy state. Plotting the total energy as a function of thickness, along with its corresponding magnetostatic
and exchange energies, we are able to identify various phase transitions and derive phase diagrams as a function of thickness and outer
radius, normalized to the exchange length, for rings with different inner to outer radius ratios. We discuss the results in terms of shape
anisotropy and its effect on the magnetostatic and exchange energies. We also compare the results of our numerical method to the phase
diagram of a nanodot and the phase diagrams of rings obtained by analytical models. Finally, we present a new ground state configura-
tion, the helix, found along the boundary between the vortex and out of plane phases, where the magnetization is vortex like, but with
moments canted along the direction.

Index Terms—Micromagnetics, nanoring, phase diagram.

I. INTRODUCTION

SMALL ferromagnetic structures have attracted a lot of
interest due to their potential for application in various

magnetoelectronic devices [1]–[3]. Among the many shapes
being considered, rings have shown a lot of promise for the
storage of flux closure states with negligible stray fields, as the
highly energetic vortex core is removed. In that respect, a lot of
analytical, numerical, and experimental work has focused on
the metastable [4] and ground states of such structures [5]–[7],
along with their switching dynamics [6], [8], [9], switching
fields [10], [11], and hysteretic behavior [10], [12], [13]. In
addition, this particular geometry has allowed for the study of
various mechanisms to control the final state of the magnetiza-
tion [14]–[16]. Yet, little has been done in the way of magnetic
phase diagrams that would describe the lowest energy state in
terms of dimensions and material parameters [5], [17].

In this paper, we use micromagnetic modeling to systemati-
cally study the magnetic ground state (lowest energy state) of
nanorings as a function of their dimensions. We limit ourselves
to the study of NiFe rings with no crystalline anisotropy in the
sub-100-nm lateral dimension regime. By comparing the energy
of various magnetization distributions, we are able to obtain a
phase diagram as a function of outer radius and thickness for
different inner to outer radius ratios. We also discuss some of
the attributes of a new helical magnetization configuration and
compare the results of our numerical method to those of an an-
alytical model and to the data for a disc [17], [18].

II. METHOD

A. Micromagnetics

The configuration of the ground state of a micromagnetic
structure is dictated by the competition between the various
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terms contributing to the total energy , and their influ-
ence on the orientation of the magnetic spins. The four main
contributions to are the magnetostatic energy , the
exchange energy , the magnetocrystalline anisotropy en-
ergy , and the Zeeman energy .

To solve for the ground state, we use the dynamic
Landau–Lifschitz–Gilbert (LLG) equation

(1)

to find the magnetization which will produce the lowest total
energy, i.e., we perform an energy minimization. In (1),

is the magnetization distribution, is the saturation
magnetization, with the gyromagnetic ratio
and a dimensionless damping constant, and the effective field

is given by

(2)

where the terms on the right hand side of (2) are the contri-
butions of , and , respectively, while
is the exchange constant, , and

, with the magnetic scalar potential.

B. Simulation Set Up

For the magnetic material of the nanorings, we assume NiFe
with the following material parameters: saturation magnetiza-
tion T, exchange constant J/m,
magnetocrystalline anisotropy constants J/m .
We choose a damping constant in order to speed up the
convergence of our simulations. Note that, since our material
has no crystalline anisotropy, and because there is no external
field in our system, and are the only contributions to
the total energy.

The simulations were run for a ring geometry, using the finite-
element (FE) micromagnetics package MAGPAR [19], [22].
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Fig. 1. (a) Magnetic configuration of observed ground states (� = 0:7).
Clockwise from top left: in plane X, vortex V, upward helix H, and out of plane
Z. The arrows represent the direction of the total magnetization.

The FE meshes were generated using NETGEN [20], ensuring
that for each mesh the average edge length of all the tetrahe-
dral elements was less than the exchange length of NiFe

nm. The outer radius of the rings
ranged between and , while the thickness went
from to . For each combination of and ,
the inner radius was selected so that the ratio of inner to
outer radius varied from 0.2 to 0.9.

Starting with a homogeneous magnetization in the direc-
tion (parallel to ), direction (parallel to ), or vortex state
(clockwise in the plane), we let our rings relax in zero ex-
ternal field, solving for and comparing the resulting equilibrium
energies. In order to minimize the number of simulations we
needed to run, we only looked at points near the phase bound-
aries, varying the thickness for fixed outer radii. The known
phase boundaries for a nanodot [18] were used as a guide. We
then plotted the lowest total energy from all three initializations,
along with the corresponding magnetostatic and exchange ener-
gies, as a function of thickness (Fig. 2). All energies were scaled
to the saturation energy density 1/2 J/m .

III. RESULTS

In Fig. 1, we see a representation of all the ground states ob-
served in our simulations. In addition to the in plane (X), out
of plane (Z), and vortex (V) states which have been described
previously in the literature [5], [6], we also observe a helical
(H) state, which will be discussed below. Fig. 2 shows two ex-
amples of the plots discussed in the previous section, for a ring
with . One can see the transition from the in plane to
out of plane ground state at (top, ),
illustrated by a discontinuity in the slope of the energy graphs,
especially , which drops by an order of magnitude. All
values showed a jump to a lower value of for the transi-
tion from the X to the Z phase, except , which exhibited
a jump to a higher value.

This difference in behavior is due to flowering, a configu-
ration where magnetic moments located at the outer edges of
the structure open outward (like a flower), to help reduce .

is the only geometry which needs more flowering out of
plane than in plane. The X-Z transitions for the larger values
are for rings with correspondingly smaller surface areas. This re-
duces the resulting surface charges and, thus, requires less flow-
ering for an out of plane magnetization. For the bottom graph

, the transitions are even more obvious, both

Fig. 2. Plot of E , with corresponding E and E as a function of thick-
ness for � = 0:6. Top: R = 1:75l with a phase transition at t = 1:69l .
Bottom: R = 2:63l with transitions at t = 1:24l and t = 4l .

Fig. 3. Comparison of the phase diagram of a nanodot (solid line, � = 0:0)
with the results of MAGPAR (dotted lines, � = 0:2; 0:6;0:9) and those of
the analytical model [17] (up and down triangles, � = 0:2;0:6), along with a
representation of the region where the H state is found for these two values of
� (shaded areas). Also shown, lines A and B, corresponding to the thickness
scans of Fig. 2; inset: magnified view of the H state region for � = 0:6, which
is significantly smaller than the region for � = 0:2.

as a discontinuity in , and as a cross over between and
, occurring at and for the X to V phase

and V to Z phase, respectively. These two thickness scans corre-
spond to line A and line B
in Fig. 3. The above energy transitions are what we observed for
all our simulations, and were used to determine the location of
the transition points.

The H state has spins aligned along the circumference of the
ring in the xy plane (much like the V state), but with nonzero
components along the axis that all point in the same direction
(upward in Fig. 1). The spin components normal to the surface
near the top and bottom of the ring have smaller magnitudes,
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thereby reducing the fringe fields. This state, found in the re-
gion around the phase boundary between the V and Z phases,
is a dimension dependent intermediate magnetization distribu-
tion, similar to the twisted flower state described by Hertel et al.
[21]. Our results indicate the H ground state is a different phase
from the V and Z phases, at least for rings with . We
base this on the fact that for values greater than 0.2, the H
state is only accessible from an initial magnetization in the
direction. This is nowhere near any local minimum of the en-
ergy landscape for the region of interest, where we only expect
to find minima for the Z and V states. Rings initialized with ei-
ther a vortex or direction magnetization stayed in their initial
states, even when the H state was energetically more favorable
and extremely close. This indicates that the minima for the H,
and either the V or Z states, can be close to one another, yet
are separated by an energy barrier. Rings with , along
with nanodots , did not for their part display the same
behavior. For these values, the H state was readily accessible
from the vortex or direction initialization in most cases.

In addition, for or smaller, the H state is present all
along the boundary between the V and Z phases. For all other
values, we do not observe such a state, or at the very least it is not
accessible from an in plane magnetization below a given
value. In the phase diagram of Fig. 3, the H state (shaded region)
is not present along the V-Z boundary below for

.
Another feature of the helix is the fact that the range over

which this state exists as a function of thickness increases with
increasing outer radius, and is different for different values.

Finally, in Fig. 3, we present a complete phase diagram as
a function of outer radius and thickness, for various values.
We compare them to the phase diagram of a nanodot [18] (solid
line). As we can see, removing a bigger portion of the inner core
(bigger values) makes the V state more favorable, compared
to an X state, as the energetic vortex core is absent and the ex-
change energy cost of getting rid of fringe fields is low. One
exception is where shape anisotropy makes a Z state
more favorable over a larger portion of what was once the X
state, as the top and bottom surfaces for such a ring are smaller
and therefore produce less fringe fields.

We also show a comparison between the results of our nu-
merical method and the analytical model of Beleggia et al. [17]
for and 0.6 (Fig. 3). The phase diagrams obtained from
our numerical method (dotted lines) account for nonhomoge-
neous magnetic states (i.e., flowering), as opposed to the ana-
lytical model (up and down triangles), which assumed homo-
geneous magnetization distributions only. Consequently, the X
to V phase transition points are higher in our case, as flowering
keeps low enough for the magnetization to stay in the X
state, as opposed to the V state which would be more favorable
for a homogeneous magnetization. The same reasoning explains
why the MAGPAR transition points from the V to Z phase are
lower than what the analytical model predicts.

IV. CONCLUSION

Using a numerical micromagnetic model, we have studied
the energy ground states of NiFe rings by running simulations
on structures with different initial magnetizations. From our re-
sults, we were able to derive phase diagrams as a function of the
dimensions of the rings with three distinct phases,
X, Z, and V. These were discussed in terms of the contribu-
tions to and shape anisotropy, and were found to be in good
agreement with diagrams obtained from an analytical model. In
addition, because we did not impose any restrictions on the final
magnetization configurations, we have observed a new helical
intermediate state H. It exists at the boundary between the Z
and V phases, and presents characteristics of both states, namely
a vortex- like orientation of the moments with a cant in the
direction.
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