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Micromagnetic Simulation of
Antiferromagnetic/Ferromagnetic Structures

D. Suess, T. Schrefl, W. Scholz, J.-V. Kim, R. L. Stamps, and J. Fidler

Abstract—A novel approach for solving the Landau–Lif-
shitz–Gilbert equation for antiferromagnets with the finite-ele-
ment method is presented. The antiferromagnet is treated in a
continuum theory which allows us to explore the domain structure
on a mesoscopic length scale. The finite-element method is suitable
to treat antiferromagnets with arbitrarily shaped grains as well
as exchange coupled antiferromagnetic (AF)/ferromagnetic (F)
structures. The change of the domain configuration in the antifer-
romagnet after the reversal of the ferromagnet leads to exchange
bias in AF/F bilayers with perfectly compensated interfaces.

Index Terms—Antiferromagnetic (AF) domain structure,
antiferromagnets, exchange bias, finite-element method, micro-
magnetics.

I. INTRODUCTION

RECENT theoretical models of antiferromagnetic (AF)/fer-
romagnetic (F) interfaces start from a discrete lattice of

spins [1]. Here we present finite element simulations based on
a continuum model to treat magnetization processes in antifer-
romagnets. This novel technique allows us to take into account
structural features like polycrystalline grains and resolves AF
domain structures at a mesoscopic lengthscale. We focus on per-
fectly compensated interfaces, where there is an equal number
of positive and negative exchange interactions across the inter-
face. Koon [2] demonstrated that the F magnetization will align
perpendicular to the AF magnetization if the interface is fully
compensated. This so-called spin flop coupling is attributed to
the frustration of the interface spins at the compensated inter-
face.

Section II of this paper presents a continuum approach to treat
magnetization processes of antiferromagnets. Then we verify
the novel algorithm comparing the results with atomistic cal-
culations obtained for a AF/F. Section III shows results for an
AF/F bilayer consisting of a F thin film on top of a polycrys-
talline antiferromagnet.

II. CONTINUUM THEORY AND FEM

In F materials, spins do not change significantly from lattice
point to lattice point owing to F exchange coupling. In AF ma-
terials the direction of the spins usually changes its directions
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Fig. 1. Schematic diagram that shows the subdivision of an antiferromagnet
into two sublattice. The AF wall structure can be represented in a continuum
model by two walls, one in each sublattice.

from lattice point to lattice point, which would result in a dis-
cretization length equal to the atomic lattice constant. However,
if the antiferromagnet is subdivided into sublattices, again the
magnetic moments varies slowly in space within each sublat-
tice (Fig. 1).

We start from the Heisenberg’s exchange energy to find the
exchange energy in continuum limit. When the spin operators
are approximated as classical vectors the exchange energy for

spins can be written as

(1)

where is the exchange integral. After the subdivision into
two sublattices it follows

(2)

where denotes the number of nearest neighbors. In a con-
tinuum limit, we want all our variables to be evaluated at the
same point. Neighboring spins of one sublattice are indirectly
coupled to each other, as spins acts on and acts on

. The sum over nearest neighbors is expanded about

(3)
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If the position of the spins form a cubic lattice (lattice constant
), points to the six neighbors along the cube edges. Linear

terms cancel because of the cubic symmetry. Thus, we get

(4)

After replacing the sum in (3) by an integral and applying
First Greens Identity with the condition that the normal deriva-
tive of the magnetic polarization at the surface vanishes, we get
for the exchange energy

(5)

where and denote the directions
of the spontaneous polarization for sublatticesand , respec-
tively. In analogy to ferromagnets the normal derivative of the
magnetization vanishes at a free surface. The normal deriva-
tive of the magnetization at the AF/F interface is neglected. An-
tiphase boundaries can be included by locally changing the ex-
change integral.

For the anisotropy energy, Zeeman energy and stray field the
continuum expressions are the same as for ferromagnets. These
three energy contributions have to be calculated for both sub-
lattices. The stray field obtained in a continuum model does not
take care of the atomic arrangement of the magnetic dipoles.
The corresponding field term has the form of an anisotropy field.
Thus, it is usually included in the anisotropy constant.

At a interface between a ferromagnet and an antiferromagnet
we calculated the interface energy as

(6)

where and , denote the directions of the
spontaneous polarization in the ferromagnet for sublatticeand

, respectively. and are the number of and sites at
the interface.

In principle the polarization of sublatticesand point par-
allel in the bulk of the ferromagnet. Thus, one sublattice yields
redundant information. However, on the interface to the antifer-
romagnet the spins of the ferromagnet may be canted. Hence,
both sublattices are required.

The time evolution of the magnetic polarization is calculated
using the Landau–Lifshitz–Gilbert (LLG) equation.

In order to test the micromagnetic approach, we compared
the finite element calculations with an atomistic approach for
Koon’s model of an exchange coupled ferromagnet/antiferro-
magnet bilayer. In order to observe domain walls in the antifer-
romagnet which are wound up past 90, it is required to intro-
duce an in-plane anisotropy.

Fig. 2. Comparison of the hysteresis loop for different mesh sizes with an
atomistic calculation.

The thickness of the F and the AF layer is 2 nm and 10 nm,
respectively. The interface between the ferromagnet and the an-
tiferromagnet, which is parallel to the– plane, is perfectly
compensated. In the atomistic approach the ferromagnet/anti-
ferromagnet is modeled as a simple cubic structure. The total
energy is calculated using a Heisenberg Hamiltonian. Details of
the atomistic approach can be found in [3].

A uniaxial anisotropy along the axis, with
5.45 10 J/m , is assumed for the antiferromagnet. The ex-
change constant is 2.725 10 J/m, and
0.5 T.

No uniaxial anisotropy is assumed in the ferromagnet. The
exchange constant in the ferromagnet is 3.6 10 J/m
and 1 T. Additionally an in plane anisotropy which favors
spin rotation in the – plane is assumed in the ferromagnet and
antiferromagnet ( 8 10 J/m ). The exchange constant
across the interface is 8.17 10 J/m.

Linear basis functions are used to interpolate the magnetiza-
tion. Tetrahedrons form the finite element mesh. The calcula-
tions were performed for different average edge length of one
tetrahedron (1.5, 1.0, and 0.6 nm). The external field is applied
10 off the axis in the – plane.

Fig. 2 compares the hysteresis loops of the finite element cal-
culation with the atomistic model. With decreasing mesh size
the finite element calculation converges toward the atomistic
method. Similar convergence can be seen in Fig. 3, which shows
the profile of the domain wall, which is formed in the antiferro-
magnet during reversal of the ferromagnet. Thecomponent of
the magnetic polarization is plotted as a function of the distance
of the interface. The discontinuity at position 0 occurs owing to
the 90 coupling between the ferromagnet and antiferromagnet.
Also, the canted state of the interface spins (I) of the AF is re-
solved by the finite-element method.

III. IrMn/PERMALLOY BILAYER

The continuum model is suitable to calculate antiferromag-
nets with large domain wall width such as IrMn. It forms a
disordered FCC () phase [4]. We treat the system with a two
lattice approach and assume the following intrinsic parameters:

10 J/m, 10 J/m , 0.5 T
and lattice constant 3.76 10 m. For permalloy
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Fig. 3. Under the action of an applied field a domain wall forms in the
antiferromagnet. The curves compare the domain wall profile of finite element
calculations with the atomistic calculation. At point I the spins at the surface of
the AF are canted and are no longer antiparallel to each other.

Fig. 4. Hysteresis loops of a ferromagnet and an F/AF bilayer with
compensated interface. The AF leads to an enhanced coercivity and to a loop
shift.

2 10 J/m , 10 J/m, 1 T. The easy axis of the
permalloy is along the axis. No in-plane anisotropy is assumed
in the ferromagnet and in the antiferromagnet. The thickness of
the permalloy layer is 2 nm and of the IrMn layer 6 nm. The
IrMn layer consists of 8 3 grains. The grain size is 8 nm. The
basal planes of the grains are squares, equal in size. The easy
axes are randomly oriented in space. The AF grains are weakly
exchange coupled to each other. We assume an intergranular
phase with a thickness of 1 nm with reduced exchange constant,

5 10 J/m or no exchange. The interface between the
permalloy layer and the IrMn layer is perfectly compensated.

The solid line of Fig. 4 gives the hysteresis loop for weak
exchange between the AF grains. The loop shows bias, although

Fig. 5. Nonequilibrium states during switching of a IrMn/Permalloy bilayer.
The antiferromagnet (AF) consists of 8� 3 grains. The size of each grain is
8� 8� 6 nm . Each grain is subdivided into about 400 finite elements.

the interface is completely compensated. In addition Fig. 4 gives
the hysteresis loop for zero exchange between the AF grains.
In this case no bias occurs. These results indicate that a weak
intergrain exchange interaction is required to obtain exchange
bias.

Fig. 5 shows a sequence of magnetization configurations
during the reversal of the ferromagnet for weak exchange
between the AF grains. From top to bottom the magnetiza-
tion of the ferromagnet reverses its orientation. Initially the
magnetization of the AF grains in the front point in the same di-
rection. When the ferromagnet is reversed the AF grains on the
left-hand side switch, whereas the AF grains on the right-hand
side remain in their original direction. As a consequence, a
domain wall is formed in the antiferromagnet. The increase of
the domain wall energy results in exchange bias.

The presented results show that the increase in domain wall
energy contributes to exchange bias. To observe a change of the
AF domain configuration it is crucial that some and not all AF
grains switch irreversibly as the ferromagnet is reversed.
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