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Abstract—In this paper, we test the performance and validity
of a semi-implicit time-integration scheme, originally applied in
quantum dynamics, for use in micromagnetics. The attempt fre-
quency and energy barriers are calculated for Co nanoparticles.
Moreover, a fit of the relaxation time to the Arrhenius–Neel law
is presented. The semi-implicit time-integration method is very
robust and allows time steps up to 3 ps at a temperature of 50 K.

Index Terms—Magnetic reversal, thermal activation, thermal
stability, thermal switching.

I. INTRODUCTION

W ITH DECREASING device dimensions, thermal
fluctuations may ultimately limit the performance of

magnetic materials used for spin valve sensors [1], magnetic
random access memory (MRAM) cells [2], or magnetic storage
media [3]. Thermal effects were included in micromagnetic
simulations. The computer models either solve the stochastic
Landau–Lifshitz–Gilbert (LLG) equation (Langevin) [4], where
a random fluctuating field mimics the thermal excitations, or
apply the Monte Carlo method on an assembly of Heisenberg
spins [5].

Langevin micromagnetics treats finite temperature effects by
adding a thermal fluctuation field to the effective field [6]. Uni-
form rotation of the magnetization is expected for small single
particles. However, a comparison of theory with experiment is
difficult, because often a nonuniform magnetization is observed,
due to complicated shapes and surfaces, crystalline defects, and
surface anisotropy [7].

In this paper, the attempt frequency and energy barriers are
calculated for Co nanoparticles. Furthermore, a fit of the cal-
culated relaxation time to the Arrhenius–Neel law is presented.
In addition to this, a curve of the probability of not switching
is drawn. A brief discussion of the micromagnetic code is in-
cluded. Finally, measures of the performance of the simulations
are given, such as the number of iterations involved in the al-
gorithm at each time step and the number of calculations of the
right-hand side of the Langevin equation.

II. STOCHASTIC LLG EQUATION

The theoretical treatment of thermally activated magnetiza-
tion reversal for particles with an extension greater than the ex-
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change length requires solving the Langevin equation numeri-
cally. The Langevin equation follows from the Gilbert equation
of motion by adding a random thermal fluctuation field to the
effective magnetic field:

(1)

The first term on the right-hand side of (1) accounts for the
gyromagnetic precession of the magnetic polarization; the
second term arises from viscous damping. After space dis-
cretization using the finite-element method, an equation similar
to (1) has to be fulfilled at each node of the finite-element mesh
[8].

The term is the gyromagnetic ratio and is the Gilbert
damping constant. The thermal field is assumed to be a Gaussian
random process with the following statistical properties:

(2)

The average of the thermal field taken over different realiza-
tions vanishes in each directionin space. The thermal field is
uncorrelated in time, uncorrelated at different node points (, )
of the finite-element mesh, and uncorrelated for different or-
thogonal vector components ( ). The strength of the thermal
fluctuations follows from the fluctuation-dissipation theorem
[9]:

(3)

where is the temperature, is the volume surrounding the
node of the finite-element mesh, and is the Boltzmann con-
stant.

III. T IME-INTEGRATION METHOD

A. Semi-Implicit Algorithm

The main steps of the semi-implicit algorithm are as follows.
1) The general form of the semi-implicit scheme is given by

[10]

(4)

where are Gaussian random numbers with mean zero
and standard deviation one andis an dimensional
multiplicative noise term.

2) The right-hand side of (4) is evaluated in the middle of
the time interval.
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3) The midpoint value is obtained by an implicit equation
.

4) The equation for the time evolution at theth time step is
now an implicit one, which involves solving for.

The above time-integration scheme treats the deterministic
part implicitly, thus, stability problems of explicit integration
schemes can be avoided. Time steps up to 4 ps lead to stable
solutions.

B. Nonlinear Equation

One way of solving the above-mentioned implicit (nonlinear)
equation is by an iterative procedure calledsimple iteration, or
functional iteration. In our simulations, the functional iteration
is stopped when the norm between two successive solution vec-
tors drops below 10 .

A normal way to measure the efficiency of a code is to solve
the problem for a number of different tolerances and plot the cost
of the method against the tolerance [11]. The number of function
evaluations (NFEs) is a very good approximation of the cost of
the micromagnetic simulations. The reason is that in micromag-
netic simulations, the evaluation of the function, that is, the eval-
uation of the Langevin equation, is the most time-consuming
part. In a three-dimensional simulation, the function evaluation
involves the calculation of exchange and magnetostatic interac-
tions fields. With a convergence criterion of 10, the average
NFEs per time step is five.

C. MATLAB Implementation

For the implementation of the micromagnetic model, we used
MATLAB [12], which is a very powerful tool for micromagnetic
simulations of small order. It has the capability of using vectors
and matrices in a very efficient way. In our implementation of
the semi-implicit scheme, each iteration costs one evaluation of
the function , where is the right-hand side of the stochastic
LLG equation.

The main steps of the code are as follows:

1) initialization of the input parameters and constants;
2) calculation of , (3);
3) repeat until end of number of realizations:

a) initialization of magnetization;
b) repeat until the end time:

i) calculation of the deterministic part of the
field;

ii) brownian increments;
iii) calculation of B, the dimensional mul-

tiplicative noise term;
iv) calculation of the magnetization at time step

;
v) normalization.

Fig. 1. Relaxation time for the spontaneous rotation of a small Co particle at
nonzero temperature and zero applied field.

IV. NUMERICAL EXPERIMENTS

A. Co Nanoparticles

For the experiments, a field lower than the zero temperature
switching field applied to a small Co nanoparticle was used. The
anisotropy energy used is given by [13]

(5)
where and are the anisotropy constants alongand , the
easy and hard magnetization axes, respectively.is the fourth-
order anisotropy constant, and the coordinate system is
deduced from by a 45 rotation around the axis. The
crystalline anisotropy constants used were J/m ,

J/m and J/m , and the
saturation polarization was 1.76 T. The particle diameter was
3.18 nm.

First, we performed a numerical telegraph noise experiment.
We simulated the thermally induced switching of the particles
for different temperatures. From the relaxation time as a func-
tion of the inverse temperature, we calculated the attempt fre-
quency Hz and the energy barrier. The energy
barrier agrees well with , as expected for uniform rotation.
Fig. 1 shows the fit of the numerical data to the Arrhenius–Neel
law for two values of the damping constant.

Fig. 2 presents the results of numerical waiting time experi-
ments for different applied fields. The external field was varied
in the range from T to T. The
Gilbert damping constant was . Again, the energy bar-
riers were derived from a fit to the Arrhenius–Neel law. The
energy barrier as a function of the field follows the well-known
relation [13]

(6)

where is the intrinsic switching field at .
Fig. 3 gives a histogram of the waiting times at K and

T and the derived probability of not switching.
The integral of this histogram (or a cumulative histogram) is
proportional to the switching probability , which is the
probability that the particle has switched by certain time. The
rescaled probability of not switching is fitted
with a single exponential function.

Finally, we calculated the coercivity as a function of the tem-
perature. The external field was applied at 0with respect to the
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(a)

(b)

Fig. 2. (a) Relaxation time for spontaneous rotation of a small Co particle at
nonzero temperature and zero applied field. (b) The derived energy barrier as a
function of the applied field.

(a)

(b)

Fig. 3. (a) Waiting time histogram. (b) Probability of not switching.

zaxis and at 45with respect to the easy axis. Again, the numer-
ical results were compared with experimental data and theoret-
ical predictions [13]. The coercive field decays with and

for an external field applied at 0and 45 , respectively
(see Fig. 4). The calculated coercive field is independent of the
Gilbert damping constant.

Fig. 4. Numerically calculated coercive field as a function of temperature of
the Co nanoparticle. The external field was applied at zero and at 45with
respect to the easy axis. The Gilbert damping constant was� = 1 (top) and
� = 0:1 (bottom).

V. CONCLUSION

Numerical experiments for thermally activated switching of
small Co particles were performed solving the stochastic Gilbert
equation. For low-energy barriers, the numerical results agree
well with the Neel–Brown theory. Agreement with the theory
was found for telegraph noise experiment, waiting time experi-
ments, and the coercivity as a function of temperature. The nu-
merically calculated attempt frequency was higher than mea-
sured experimentally.

REFERENCES

[1] N. Smith and P. Arnett, “Thermal magnetization noise in spin valves,”
IEEE Trans. Magn., vol. 38, pp. 32–37, 2002.

[2] N. D. Rizzo, M. DeHerrera, J. Janesky, B. Engel, J. Slaughter, and S.
Tehrani, “Thermally activated magnetization reversal in submicron mag-
netic tunnel junctions for magnetoresistive random access memory,”
Appl. Phys. Lett., vol. 80, pp. 2335–2337, 2002.

[3] D. Weller and A. Moser, “Thermal effect limits in ultrahigh-density
magnetic recording,”IEEE Trans. Magn., vol. 35, pp. 4423–4439, Nov.
1999.

[4] G. Brown, M. A. Novotny, and P. A. Rikvold, “Langevin simulation of
thermally activated magnetization reversal in nanoscale pillars,”Phys.
Rev. B, vol. 64, p. 134422, 2001.

[5] U. Nowak, “Thermally activated reversal in magnetic nanostructures,”
Ann. Rev. Comp. Phys., vol. 9, p. 105, 2001.

[6] W. F. Brown, “Thermal fluctuations of a single-domain particle,”Phys.
Rev., vol. 130, pp. 1677–1686, 1963.

[7] M. J. Werner, “Quantum statistics of fundamental and higher-order co-
herent quantum solitons in Raman-active waveguides,”Phys. Rev. A, vol.
54, pp. R2567–R2570, 1996.

[8] T. Schrefl, W. Scholz, D. Suess, and J. Fidler, “Langevin micromagnetics
of recording media using subgrain discretization,”IEEE Trans. Magn.,
vol. 36, pp. 3189–3191, Sept. 2000.

[9] W. F. Brown Jr.,Micromagnetics. New York: Interscience, 1963.
[10] M. J. Werner and P. D. Drummond, “Robust algorithms for solving

stochastic partial differential equations,”J. Comp. Phys., vol. 132, pp.
312–326, 1997.

[11] L. F. Shampine,Numerical Solution of Ordinary Differential Equa-
tions. New York: Chapman Hall, 1994.

[12] “MATLAB User’s Guide,” The Mathworks, Inc., Natick, MA, 1993.
[13] W. Wernsdorfer, “Classical and quantum magnetization reversal studied

in nanometer-sized particles and clusters,” inAdvances in Chemical
Physics, S. A. Rice, Ed. New York: Wiley, 2001.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


