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The switching process of magnetic recording NiFe thin films is considered. First, it is illustrated
through numerical micromagnetic simulations that precessional switching process can be reasonably
considered a quasiuniform process, while in conventional switching process, domain nucleation and
wall motion are involved in the magnetization reversal dynamics. Second, we used analytical
uniform mode theory of precessional switching to predict the duration of the applied field pulse. We
verified that the uniform mode theory provides reasonably good indications on the quasiuniform
precessional switching dynamics. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1689910#

The fast magnetization switching of thin films and nano-
elements is one of the fundamental issues in spin dynamics
studies for its importance in the area of magnetic data storage
technologies. Traditionally, magnetization reversal in thin
films is realized by applying a sufficiently large magnetic
field almost antiparallel to the initial magnetization state and
the resulting reversal dynamics is driven by dissipative pro-
cesses. Recently, the possibility of using precessional motion
of magnetization to realize the switching of thin films and
particles has been investigated.1,2 In this kind of switching,
the in-plane external field is approximately orthogonal to the
initial magnetization state and produces a torque that drives
precessional motion of magnetization; this results in a faster
and less energy-consuming magnetization dynamics. Magne-
tization reversal is realized by switching the field off pre-
cisely when precession has brought the magnetization state
close to its reversed orientation. Therefore, the applied field
pulse duration has to be carefully chosen, while in conven-
tional switching there is no such need. Although it is gener-
ally desired that thin films and nanoelements in magnetic
storage devices are in almost uniform magnetization states,
both conventional switching and precessional switching are
nonuniform dynamic processes. In this article, we consider
the switching process of a permalloy magnetic rectangular
thin film: the thickness isc55 nm, and the major and mean
edge length are, respectively,a5500 andb5250 nm. The
thin-film medium has a uniaxial magnetocrystalline anisot-
ropy whose easy axis is along thex axis ~long axis!, the
uniaxial anisotropy constant isK1523103 J/m3, the ex-
change stiffness constant isA51.3310211 J/m, the satura-
tion polarization isJs51 T (Ms'795 kA/m), and the damp-
ing constant isa50.02; the exchange length of the material

is l exc5A(2A)/(m0Ms
2)55.7160 nm. We assume that mag-

netization dynamics of the thin film is described by the
Landau–Lifshitz–Gilbert equation, namely
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whereg is the absolute value of the gyromagnetic ratio,a is
the damping constant, andHeff is the effective field

Heff~M ~ .!!5Hm1Hexc1Han1Ha , ~2!

which takes into account the applied fieldHa , the exchange
field Hexc, the anisotropy fieldHan, and the magnetostatic
~demagnetizing! field Hm . In micromagnetic simulations Eq.
~1! is integrated numerically using a backward differentiation
formula.3 The spatial discretization is done using the finite
element method with a mesh consisting of tetrahedrons. The
mesh is finer near the corners of the thin film~mesh edge
length55 nm, l exc) where a stronger accuracy is required
for the computation of magnetostatic field. A hybrid finite
element boundary element method4 is used to solve the mag-
netostatic problem. First, we performed micromagnetic
simulations of conventional~damping! and precessional
switching process for the thin film; the external field is ap-
plied, respectively, antiparallel and orthogonal to the easy
axis, as sketched in Fig. 1. We compared two aspects of the
switching processes: the switching speed and the uniformity
of the magnetization during the reversal process. We con-
sider, as a measure of the switching speed, the time instantt0

at which the average component ofmx is zero after the ap-
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FIG. 1. ~a! Conventional~damping! switching process and~b! precessional
switching process.
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plication of the external field~the external field strength is
the same in both the simulations!. In Fig. 2 one can observe
the behavior of the averagemx component until it reaches
zero, showing that the precessional switching dynamics is
considerably faster (t050.09 ns) than damping switching’s
(t050.17 ns). This is due to the different nature of the
mechanism driving magnetization motion in the two pro-
cesses: in conventional switching there is only one stable
equilibrium configuration after the application of the external
field, namely the reversed state, so the switching process is a
kind of relaxation process towards the stable equilibrium and
therefore the damping process is crucial. In precessional
switching the main role is played by the magnetic torque
acting on the magnetization, which causes a fast precessional
motion around the effective field driving the magnetization
back and forth between the initial and the reversed state. In
most cases this process is so fast that dissipative effects can
be neglected. As far as the uniformity of magnetization is
concerned, we consider the sum of the square values of the
average magnetization components^mx&

21^my&
21^mz&

2

~^.& means spatial average! as a measure of the uniformity of
the switching process; the results are reported in Fig. 3. One
can easily observe that precessional switching@Fig. 3~a!–
3~b!# is a quasiuniform process, because the sum of the
square values of the average magnetization components re-
mains almost constant during time and close to unity,
whereas for damping switching it decreases rapidly towards
zero, showing the occurrence of domain nucleation and do-
main wall motion@Fig. 3~c!#. Thus we can conclude that for

precessional switching, in our case of thin-film medium, one
can reasonably apply the uniform mode theory to predict the
duration of the external field pulse, which is necessary to
achieve successful switching. To this end, let us now con-
sider a uniformly magnetized ellipsoidal particle: in this case
the magnetostatic field can be expressed analytically using
the so-called demagnetizing factorsNx , Ny , and Nz . The
thin film is modeled by an ellipsoidal particle with
Nx!Nz , Ny!Nz . The magnetization dynamics is governed
by Landau–Lifshitz–Gilbert equation

dm

dt
52m3heff1am3

dm

dt
, ~3!

where time is measured in units of (gMs)
21 and the~nor-

malized! effective fieldheff5Heff /Ms now has the following
expression, provided that the exchange field is zero:

heff52Dxmx2Dymy2Dzmz1haey . ~4!

The coefficientDx,Dy,Dz take into account the demagne-
tizing effects and crystalline anisotropy,ha is the normalized
applied field andey the unit vector along the Cartesian
axisy. The relationship between the material parameters and
the coefficientsDx , Dy , Dz are

Dx5Nx2
2K1

m0Ms
2 , Dy5Ny , Dz5Nz . ~5!

We follow now the line of reasoning used in Ref. 5: for short
field pulses and small damping, it is possible to neglect the
dissipative effect with respect to the magnetic torque. For
this reason, we assumea50 in Eq. ~3!. In this ~conserva-
tive! case, the dynamical system described by Eq.~3! admits
the following two integrals of motion:

mx
21my

21mz
251, ~6!
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22hamy5g0 , ~7!

representing, respectively, magnetization magnitude conser-
vation and energy conservation,g0 being the initial energy.
By considering the appropriate linear combination of Eqs.
~6! and ~7!, the following expressions can be obtained:
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FIG. 2. Numerical results: comparison between damping~dashed line! and
precessional~solid line! switching: time for averagemx component to reach
zero from the starting configuration forHa519.51 kA/m.

FIG. 3. Numerical results:~a! precessional switching: magnetization vector field att5t0 ; ~b! plot of ^mx&
21^my&

21^mz&
2 vs time in the interval (0,t0) for

damping ~right! and precessional switching~left!; ~c! damping switching: magnetization vector field att5t0 ~the applied field strength is
Ha519.51 kA/m), and~d! S state~top!, C state~bottom!.
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The fact thatmx and mz can be expressed as a function of
my , allows one to write a differential equation formy only,
which can be solved by separation of variables using the
appropriate Jacobi elliptic functions. In particular, the period
of the oscillation can be derived. To this end, we need the
expression of the roots of the polynomials on the right-hand
sides of Eqs.~8! and ~9!, which in our case, are all real,

m652
ha

Dz2Dy
6A ha

2

~Dz2Dy!2 1
Dz/22g0

Dz/22Dy/2
, ~10!

n652
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Dy2Dx
6A ha

2

~Dy2Dx!
2 1

g02Dx/2

Dy/22Dx/2
. ~11!

It is shown in Ref. 5 that the periodT of the oscillation is

T58K~k!@~Dz2Dy!~Dy2Dx!~n12n2!~m12m2!#21/2,
~12!

where k25@(m12n2)(n12m2)#/@(n12n2)(m12m2)#
is the modulus of the elliptic function andK(k) is the com-
plete elliptic integral. Consequently, the switching time is
defined as a half periodTs5T/2. It is also shown in Ref. 5
that a critical value of the external applied field exists and
that below this valuehcrit5(Dy2Dx)/2, the precessional
switching of the particle does not occur. It is important to
emphasize thathcrit is half the critical Stoner–Wohlfarth
valuehSW5Dy2Dx .

We performed a set of micromagnetic numerical simula-
tions of the precessional switching process for the values of
Ha andTs specified in Table I, reporting the switching time
Ts5T/2, analytically computed using Eq.~12!, for different
values ofHa . The simulations were started from two differ-

ent initial magnetization configurations which can be typi-
cally observed in the experiments on thin-film media: the
so-calledS state andC state@see Fig. 3~d!#.

In Fig. 4 a comparison between the analytical solution of
Eq. ~3! with a50, the numerical solution of Eq.~3! with
a50.02 for a uniformly magnetized thin-film shaped ellip-
soidal particle~macrospin model! and the finite element so-
lution of Eq. ~1! is reported for an applied field strength
ha51.53hSW. In the undamped case, at timet5Ts the
magnetization is exactly in the reversed position, so, switch-
ing off the external field, it remains definitely in this state; if
the damping term is added in Eq.~3!, one can see that after
t5Ts there is a small oscillation of̂mx& because the system
is not yet in the minimum energy state. In the general non-
uniform case one can easily see that the uniform mode
theory provides reasonably good information about the dura-
tion of the field pulse, but the presence of nonuniform modes
produces an oscillation that can bring magnetization back to
the initial state as one can see in Figs. 5~a!–5~b!. For this
reason, a field strengthha51.53hSW is required to achieve
successful switching starting from either anS state or aC
state. We observe that this value is moderately larger than the
critical value provided by uniform mode theory,
hcrit5hSW/2.
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FIG. 5. Numerically computed̂mx& as a function of time:~a! S state,~b! C-
state initial condition. Symbols:~h! stands forha5hSW; ~s! for ha51.1
3hSW; (3) for ha51.23hSW; ~,! for ha51.33hSW; ~L! for ha51.4
3hSW; and ~n! for ha51.53hSW.

TABLE I. Switching timeTs5T/2, analytically computed using Eq.~12! for
different values ofHa .

ha /hSW 1.0 1.1 1.2 1.3 1.4 1.5

Ha ~kA/m! 13.01 14.31 15.61 16.91 18.21 19.51
Ts ~ns! 0.194 0.181 0.171 0.162 0.155 0.149

FIG. 4. Analytical and numerical solutions of Landau–Lifshitz–Gilbert
equation. Plot of ^mx& vs time: ha51.53hSW, Dx51.231023,
Dy50.0175, andDz50.9763.
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