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Nucleation in polycrystalline thin films using a preconditioned finite
element method
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The dynamic response of a 80 w100 nmx25 nm Co film with and without polycrystalline grains

is calculated. The numerical method combines a finite element scheme for space discretization with
a preconditioned backward differentiation method for the time integration of the Landau—Lifshitz—
Gilbert equation. The use of proper preconditioning techniques for the backward differentiation
formulas increases its efficiency by a factor of 40. The speed up factor compared to the Adams
method is more than three orders of magnitude. In the polycrystalline thin film the nucleation of
reversed domains occurs throughout the sample at grain boundaries and sharp edges. For the single
crystalline film reversal starts at particle ends. Surface roughness does not significantly change the
reversal mode but reduces the switching time by 40%.2@2 American Institute of Physics.
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I. INTRODUCTION y(t,). The variable time step is denoted with. «,; and
Bn; are constants that depend on the integration formula.
The precise understanding of the switching process obepending on the values &f, andK,, Eq. (1) describes the
thin film nanomagnets is important for sensor and spin elecBDF or Adams formula. IfK,=1 andK,=q—1 Eq. (1)
tronic applications. Surface irregularities and grain structuréeads to the Adams formula of ordgr The BDF formula of
drastically change the reversal mechanism of thin filmorderq is represented by Eql) with K,=q andK,=0. For
elements:? Taking into account surface roughness and grairthe special case af=1 the constant&, and K, are the
structures requires an inhomogeneous computational grigame for the Adams and the BDF formula. For that case, Eq.
which in turn causes very small time steps for time integra<{1) simplifies to
tion. Toussaint and co-workérshowed that the time step
required to obtain a stable solution of the Landau-Lifshift—  y,—y,_;=h,f,, (2
Gilbert (LLG) equation with an explicit time integration
scheme has to be proportionalhid Hereh is the size of the  which represents the implicit Euler method. To solve &X.
spatial grid. Edge roughness and an irregular grain structurer generally Eq(1) a nonlinear system of equations has to be
may cause small computational cells which leads to a smallolved at each time step which can be effectively solved
time step when an explicit time integration method is appliedusing the Newton method. Thus a second linear system of
to solve the LLG equation. equations arises at each Newton iteration. The linear iteration
In computational physics, the backward differentiation
formula (BDF) methods are popular in order to solve the
system of ordinary differential equations which results from 1+
the space discretization of partial differential equatibns.
Yang and Fredkihoriginally applied a BDF method in dy-
namic micromagnetic simulations. They applied the Galerkin 0.5
variant of the finite element method for space discretization L
and a generalized minimum residual meth@MRES to .
solve the linear systems involved in the solution process..»
One linear system gives the magnetic scalar potential. It
arises from the space discretization of the Poisson equation
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The numerical solution of the LLG equation, which can gen-
erally be written in the formy=f(t,y), leads to discrete " : ]
valuesy, at time pointst,,. For the BDF and Adam method e | ' | -
the valuesy,, follow from the liner multistep formula: a0 s 0 ' T
H, (kA/m)

Ky Kz

2 aniVn_it hnZ Bn ifnfi =0, (D) FIG. 1. Hysteresis loop of an element witA) smooth surface and zero

i=0 =0 magnetocrystalline anisotropiB) surface roughness and zero magnetocrys-

) ) _ talline anisotropy, andC) granular structure with random anisotropy in
wherey,, are the computed approximations to the solutionevery grain.
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| ' T T a fully populated matrix. In micromagnetism the matAx
contains the second derivative of the Gibbs free energy. Due
— smooth to the stray field energy, which describes a long term inter-
" ;‘r“,a:ﬁ::il(lzo - action, the matrixA is fully populated. With the GMRES
method the systerAAy= b can be iteratively solved without
explicit knowledge of the matriXA. For every iteration the
. GMRES solver has to calculate the product of the mafrix
times a vector. That product is approximated using finite dif-
ferences. We found that in micromagnetism a good approxi-
- mation toA follows from the second derivative of the Gibbs
free energy omitting the stray field interaction. As the short
range interactions are the major source of stiffness in micro-
i . > ] magnetic simulations, we obtain a significant speed up while
0 0.25 ime tas) 0.75 ! keeping the system matrix sparse. For the investigated
sample preconditioning speeds up the calculation by a factor
FIG. 2. Time evolution of the magnetic polarization after the application of of 40.
a field of Heq=—100 kA/m for the three different elementa), (B), and Preconditioning as described above allows the dynamic
©: simulation of large realistic structures taking into account
surface roughness and irregular grains within a reasonable
g},PU time. The numerical results show that both the quasi-
static reversal process and the magnetization reversal dynam-
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is stopped when the desired accuracy is obtained or the line
iterations reaches the upper linij, called the maximum S ? .
dimension of the Krylov subspace. The GMRES method is dcs significantly depend on the microstructure of thin film
matrix free iterative method to solve a linear system of equaglements.
tions. The number of iterations in the GMRES solver is very
large yvhen th_e_llnear system is |II_-cqnd|t|on_e_d. However,”_ MICROMAGNETIC AND NUMERICAL

even if the original sy_/?tem\Ay:b is ill-conditioned, an BACKGROUND

equivalent systemAP™")(PAy)=A'x'=b can be found,

which is easy to solve. The equivalent systérix’ =b can The theoretical treatment of magnetization dynamics at
be solved with few iterations, B is a good approximation to zero temperature starts from the LLG equafiohhe LLG

A, because theA’ is close to the identity matrix. This pro- equation preserves the norm of the magnetic polarization.
cedure is called preconditioning. The crucial part is to find arhus the deviation ofJ|/Js from unity may serve as a mea-
good approximation tA. The problem is that usually the sure of the accuracy of the time integration scheme and the
matrix A cannot be explicitly constructed or stored since it isfollowing time integration error can be defined:

ume (ns)

A

t=0.2 t=0

H,,, = 100 KA/m

FIG. 3. Magnetization states after the application of a fieltHgfi= — 100 kA/m for element$A), (B), and(C). The initial state is the remanent state. The
component of the magnetic polarization is color codégd/Js=1=white, J,/Js= —1=black).
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TABLE I. Compares statistical data for the Adams method, BDF method with and without preconditioning after
0.76 ns of simulated time. The Krylov subspace dimensjgp=15 in (BDF 15 andl,,,=600 in (BDF 600
and (BDF Precongl

Adam$ BDF 15 BDF 600 BDF precond

Total CPU time(s) 2x 10 2x10°  27.8x10¢ 1.48x10*
Average CPU per timeste(s) 1.6 26 69.4 9.69
Average number GMRES iterations per Newton step - 14 64.3 1.18
Average timestep§ps) 5x10°° 6x10°° 0.18 0.50
Number of renormalization stepsn (error indicatoy 1x10* 21 216 6

#The data for the Adams method are extrapolated from a simulation of 0.02 ns simulated time.

epn=max|1—(|J4/39)], (4 occur only at particle ends. However, the surface roughness

herei f 1 to the total ber of nodal point reduces the switching tim@gime whenJ, becomes smaller
wherei runs from 1 to the total number of nodal points. - 0 by about 40%.

The LLG equation is solved using a finite element

T I i he LL ion f I
method as described in Ref, 7. o be able to integrate the LLG equation for granular

elements, which leads to irregular finite element grids, so-
phisticated time integration scheme have to be used. We have
Il RESULTS AND DISCUSSION varied a number of input parameters of the CVODE refer-
In order to investigate the influence of edge irregularitiesences package. Table | compares the Adams method with
and a polycrystalline anisotropy on the reversal process wdvo BDF methods with different dimensions of the Krylov
modeled different elements with the finite element methodsubspacel(,,) and one BDF method with preconditioning.
All of the elements are 400 nm long, 80 nm wide, and 25 nmThe number of renormalized steps acts as error indicator
thick. The spontaneous polarizatidg=1.76 T and the ex- for the simulations. Usually the LLG equation conserves the
change constanA=1.3x10"*' J/m. One element denoted norm of the magnetization, however, the numerical solution
by (A) consists of a perfect microstructure. The surface ideads to a deviation of the norm. When the derivation norm
flat, no grains are assumed within the particle, and the crysexceeds 0.01 the magnetization is renormalized in our pro-
talline anisotropy is zero. Eleme(B) takes account of sur- gram. So a small number ofrn indicates an accurate solu-
face roughness. The notches average 8 nm. Ele(@mon-  tion. An increase of ., in the BDF method without precon-
sists of 500 columnar grair(siameter is 8 nmwith random  ditioning decreases the CPU time but increases the error of
distribution of the magnetocrystalline anisotropy directions.the solution. Preconditioning drastically decreases both, the
The anisotropy constant wal§; =450 kJ/ni. The grain  error of the solution and the CPU time.
structure was calculated using a voronoi construction. Every
grain consists of about 27 finite elements. In all simulationdV. CONCLUSION
the angle between the external field and the long axis of the

o . Numerical micromagnetics is an essential tool to opti-
Co elementis 1° to break the symmetry of the system. I:'gur?nize magnets in magnetic storage and sensors. The applica-
1 shows the hysteresis loop for eleme(g, (B), and(C). 9 9 9 j bp

The external field is decreased in steps of 4.2 kA/m, in ordeFIon of these de\{|ces requires a profound knowledge of the
eversal mechanism. Using the LLG equation the time evo-

to calculate the hysteresis curve quasistatically. For eacfu . o
) T : o ution of the magnetization can be calculated. The treatment
field value the LLG equation is integrated until equilibrium

: .~ of systems with realistic size leads to a system of ordinary
is reached. The granular eleme has the largest coercive differential equation with up to one million unknowns. State
field, H.=72 kA/m. The coercive field decreases by less d P :

than 10% for the perfect Co element without crystalline an-Of the art tme Integration schemes provides an efficient nu-
) . merical solution of the equation.
isotropy. Surface roughness leads to a reduction of the coer-
cive field by about 20%. Figure 2 shows the time evolution
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