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Nucleation in polycrystalline thin films using a preconditioned finite
element method

D. Suess, V. Tsiantos, T. Schrefl, W. Scholz, and J. Fidler
Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Austria

The dynamic response of a 80 nm3400 nm325 nm Co film with and without polycrystalline grains
is calculated. The numerical method combines a finite element scheme for space discretization with
a preconditioned backward differentiation method for the time integration of the Landau–Lifshitz–
Gilbert equation. The use of proper preconditioning techniques for the backward differentiation
formulas increases its efficiency by a factor of 40. The speed up factor compared to the Adams
method is more than three orders of magnitude. In the polycrystalline thin film the nucleation of
reversed domains occurs throughout the sample at grain boundaries and sharp edges. For the single
crystalline film reversal starts at particle ends. Surface roughness does not significantly change the
reversal mode but reduces the switching time by 40%. ©2002 American Institute of Physics.
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I. INTRODUCTION

The precise understanding of the switching process
thin film nanomagnets is important for sensor and spin e
tronic applications. Surface irregularities and grain struct
drastically change the reversal mechanism of thin fi
elements.1,2 Taking into account surface roughness and gr
structures requires an inhomogeneous computational
which in turn causes very small time steps for time integ
tion. Toussaint and co-workers3 showed that the time ste
required to obtain a stable solution of the Landau–Lifshi
Gilbert ~LLG! equation with an explicit time integratio
scheme has to be proportional toh.2 Hereh is the size of the
spatial grid. Edge roughness and an irregular grain struc
may cause small computational cells which leads to a sm
time step when an explicit time integration method is appl
to solve the LLG equation.

In computational physics, the backward differentiati
formula ~BDF! methods are popular in order to solve t
system of ordinary differential equations which results fro
the space discretization of partial differential equation4

Yang and Fredkin5 originally applied a BDF method in dy
namic micromagnetic simulations. They applied the Galer
variant of the finite element method for space discretizat
and a generalized minimum residual method~GMRES! to
solve the linear systems involved in the solution proce
One linear system gives the magnetic scalar potentia
arises from the space discretization of the Poisson equa
The numerical solution of the LLG equation, which can ge
erally be written in the formẏ5 f (t,y), leads to discrete
valuesyn at time pointstn . For the BDF and Adam metho
the valuesyn follow from the liner multistep formula:

(
i 50

K1

an,i yn2 i1hn(
i 50

K2

bn,i f n2 i50, ~1!

where yn are the computed approximations to the solut
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y(tn). The variable time step is denoted withhn . an,i and
bn,i are constants that depend on the integration form
Depending on the values ofK1 andK2, Eq. ~1! describes the
BDF or Adams formula. IfK151 and K25q21 Eq. ~1!
leads to the Adams formula of orderq. The BDF formula of
orderq is represented by Eq.~1! with K15q andK250. For
the special case ofq51 the constantsK1 and K2 are the
same for the Adams and the BDF formula. For that case,
~1! simplifies to

yn2yn215hnf n , ~2!

which represents the implicit Euler method. To solve Eq.~2!
or generally Eq.~1! a nonlinear system of equations has to
solved at each time step which can be effectively solv
using the Newton method. Thus a second linear system
equations arises at each Newton iteration. The linear itera

FIG. 1. Hysteresis loop of an element with~A! smooth surface and zero
magnetocrystalline anisotropy,~B! surface roughness and zero magnetocr
talline anisotropy, and~C! granular structure with random anisotropy i
every grain.
7 © 2002 American Institute of Physics
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is stopped when the desired accuracy is obtained or the li
iterations reaches the upper limitl max called the maximum
dimension of the Krylov subspace. The GMRES method
matrix free iterative method to solve a linear system of eq
tions. The number of iterations in the GMRES solver is ve
large when the linear system is ill-conditioned. Howev
even if the original systemADy5b is ill-conditioned, an
equivalent system (AP21)(PDy)5A8x85b can be found,
which is easy to solve. The equivalent systemA8x85b can
be solved with few iterations, ifP is a good approximation to
A, because thenA8 is close to the identity matrix. This pro
cedure is called preconditioning. The crucial part is to fin
good approximation toA. The problem is that usually th
matrix A cannot be explicitly constructed or stored since it

FIG. 2. Time evolution of the magnetic polarization after the application
a field of Hext52100 kA/m for the three different elements~A!, ~B!, and
~C!.
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a fully populated matrix. In micromagnetism the matrixA
contains the second derivative of the Gibbs free energy. D
to the stray field energy, which describes a long term in
action, the matrixA is fully populated. With the GMRES
method the systemADy5b can be iteratively solved withou
explicit knowledge of the matrixA. For every iteration the
GMRES solver has to calculate the product of the matrixA
times a vector. That product is approximated using finite d
ferences. We found that in micromagnetism a good appro
mation toA follows from the second derivative of the Gibb
free energy omitting the stray field interaction. As the sh
range interactions are the major source of stiffness in mic
magnetic simulations, we obtain a significant speed up w
keeping the system matrix sparse. For the investiga
sample preconditioning speeds up the calculation by a fa
of 40.

Preconditioning as described above allows the dyna
simulation of large realistic structures taking into accou
surface roughness and irregular grains within a reason
CPU time. The numerical results show that both the qua
static reversal process and the magnetization reversal dyn
ics significantly depend on the microstructure of thin fil
elements.

II. MICROMAGNETIC AND NUMERICAL
BACKGROUND

The theoretical treatment of magnetization dynamics
zero temperature starts from the LLG equation.6 The LLG
equation preserves the norm of the magnetic polarizat
Thus the deviation ofuJu/Js from unity may serve as a mea
sure of the accuracy of the time integration scheme and
following time integration error can be defined:

f

e
FIG. 3. Magnetization states after the application of a field ofHext52100 kA/m for elements~A!, ~B!, and~C!. The initial state is the remanent state. Th
component of the magnetic polarization is color coded (Jz /Js515white, Jz /Js5215black!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Downloaded 13 D
TABLE I. Compares statistical data for the Adams method, BDF method with and without preconditioning
0.76 ns of simulated time. The Krylov subspace dimensionl max515 in ~BDF 15! and l max5600 in ~BDF 600!
and ~BDF Precond!.

Adamsa BDF 15 BDF 600 BDF precond

Total CPU time~s! 23107 23106 27.83104 1.483104

Average CPU per timestep~s! 1.6 26 69.4 9.69
Average number GMRES iterations per Newton step ¯ 14 64.3 1.18
Average timesteps~ps! 531025 631023 0.18 0.50
Number of renormalization stepsnrn ~error indicator! 13104 21 216 6

aThe data for the Adams method are extrapolated from a simulation of 0.02 ns simulated time.
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and
eDN5maxi u12~ uJsu/Js!u, ~4!

wherei runs from 1 to the total number of nodal points.
The LLG equation is solved using a finite eleme

method as described in Ref. 7.

III. RESULTS AND DISCUSSION

In order to investigate the influence of edge irregularit
and a polycrystalline anisotropy on the reversal process
modeled different elements with the finite element meth
All of the elements are 400 nm long, 80 nm wide, and 25
thick. The spontaneous polarizationJs51.76 T and the ex-
change constantA51.3310211 J/m. One element denote
by ~A! consists of a perfect microstructure. The surface
flat, no grains are assumed within the particle, and the c
talline anisotropy is zero. Element~B! takes account of sur
face roughness. The notches average 8 nm. Element~C! con-
sists of 500 columnar grains~diameter is 8 nm! with random
distribution of the magnetocrystalline anisotropy directio
The anisotropy constant wasK15450 kJ/m3. The grain
structure was calculated using a voronoi construction. Ev
grain consists of about 27 finite elements. In all simulatio
the angle between the external field and the long axis of
Co element is 1° to break the symmetry of the system. Fig
1 shows the hysteresis loop for elements~A!, ~B!, and ~C!.
The external field is decreased in steps of 4.2 kA/m, in or
to calculate the hysteresis curve quasistatically. For e
field value the LLG equation is integrated until equilibriu
is reached. The granular element~C! has the largest coerciv
field, Hc572 kA/m. The coercive field decreases by le
than 10% for the perfect Co element without crystalline a
isotropy. Surface roughness leads to a reduction of the c
cive field by about 20%. Figure 2 shows the time evoluti
of the magnetic polarization for the three different elemen
The initial state is the remanent state of the previously m
tioned hysteresis loop calculation. The external field is
plied instantaneously with a field strength ofHext5100
kA/m. The Gilbert damping constant is assumed to bea
50.1. The granular structure significantly influences the
namics of the system. For perfect elements the high st
field at the particle ends determines the reversal process.
stray field causes nucleation at the particle ends as show
Fig. 3~a!. In contrast, nucleations also occur within the p
ticle for the granular element@Fig. 3~C!#. The particle ends
become less important. The grain boundaries initiate the
versal process. Surface roughness does not significa
change the reversal mode. Also for rough surfaces vort
ec 2002 to 128.130.45.110. Redistribution subject to A
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occur only at particle ends. However, the surface roughn
reduces the switching time~time whenJz becomes smaller
than 0! by about 40%.

To be able to integrate the LLG equation for granu
elements, which leads to irregular finite element grids,
phisticated time integration scheme have to be used. We h
varied a number of input parameters of the CVODE ref
ences package. Table I compares the Adams method
two BDF methods with different dimensions of the Krylo
subspace (l max) and one BDF method with preconditioning
The number of renormalized stepsnrn acts as error indicato
for the simulations. Usually the LLG equation conserves
norm of the magnetization, however, the numerical solut
leads to a deviation of the norm. When the derivation no
exceeds 0.01 the magnetization is renormalized in our p
gram. So a small number ofnrn indicates an accurate solu
tion. An increase ofl max in the BDF method without precon
ditioning decreases the CPU time but increases the erro
the solution. Preconditioning drastically decreases both,
error of the solution and the CPU time.

IV. CONCLUSION

Numerical micromagnetics is an essential tool to op
mize magnets in magnetic storage and sensors. The app
tion of these devices requires a profound knowledge of
reversal mechanism. Using the LLG equation the time e
lution of the magnetization can be calculated. The treatm
of systems with realistic size leads to a system of ordin
differential equation with up to one million unknowns. Sta
of the art time integration schemes provides an efficient
merical solution of the equation.
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