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Thermal magnetization noise in submicrometer spin valve sensors
Vassilios D. Tsiantos,a) Thomas Schrefl,b) Werner Scholz, and Josef Fidler
Vienna University of Technology, Institute of Solid State Physics, Wiedner Hauptstrasse 8-10/138, A-1040,
Vienna, Austria

~Presented on 15 November 2002!

With decreasing device dimensions thermal fluctuations may ultimately limit the performance of
spin valve sensors. Using finite element micromagnetic simulations, we investigate thermal
magnetization noise in submicrometer soft magnetic sensor elements within the framework of
Langevin simulations. Local random thermal fluctuations lead to a collective motion of the
magnetization. The magnetization precesses in the end domains leading to an oscillation of the total
magnetization parallel to the long axes with an amplitude in the order of 0.1Ms at 350 K. The noise
power increases linearly with temperature. Irrespective of the bias field, the time averaged total
magnetization parallel to the long axes decays approximately by 0.01Ms as the temperature is
raised by 100 K. ©2003 American Institute of Physics.@DOI: 10.1063/1.1557853#
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I. INTRODUCTION

With decreasing device dimensions thermal fluctuatio
may ultimately limit the performance of spin valve sensor1

Only recently thermal effects have been included in mic
magnetic simulations. The computer models either solve
stochastic Landau–Lifshitz–Gilbert equations,2 where a ran-
dom fluctuating field mimics the thermal excitations, or a
ply the Monte Carlo method on an assembly of Heisenb
spins.3

Heinonen4 calculated hysteresis loops and thermal flu
tuations of patterned soft magnetic structures includ
finite-temperature effects by means of the Monte Ca
method. The simulations show a large increase in magn
noise owing to fluctuations in both the reference and f
layer of spin valve structures with reduced dimensions. B
tram and coworkers5 analyzed magnetoresistive therm
magnetization fluctuations experimentally and theoretica
as a function of the bias current. The results indicate t
damping plays an important role and can be described
tensor form. The magnetization noise was found to be
versely proportional to the sensor volume and at low f
quencies proportional to the dynamic damping. Smith a
Arnett1 showed that the measured magnetization noise
spin valve sensors is in good quantitative agreement w
predictions based on the fluctuation dissipation theor
Zhu6 has found that in spin valve heads at deep submicro
ter track widths the thermal magnetic noise is at a magnit
comparable to the head’s Johnson’s noise. Moreover,
found that the magnitude of noise and the noise spectra
strong functions of the sensor stripe height. Slavinet al.7

studied the spatial and temporal distribution of linear a
nonlinear spin-wave excitations in two-dimensional film
They performed their experiments using the space- and ti
resolved Brillouin light scattering~BLS! technique. They re-
port that in the nonlinear regime, stationary and nonstati
ary self-focusing effects were observed.

a!Electronic mail: v.tsiantos@computer.org
b!Electronic mail: thomas.schrefl@tuwien.ac.at
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We solve the stochastic Landau–Lifshitz–Gilbert equ
tion applying a robust semi-implicit time integratio
method.8 Owing to exchange and magnetostatic interactio
local perturbations, as introduced by the fluctuating fie
will lead to collective thermal excitations or spin waves. T
origin of collective magnetization modes, which arise fro
random fluctuations, was originally investigated by Chantr
and co-workers.9

II. THE METHOD

The theoretical treatment of thermally activated mag
tization reversal for particles with an extension greater th
the exchange length requires solving the Langevin equa
numerically. The Langevin equation follows from the Gilbe
equation of motion by adding a random thermal fluctuat
field to the effective magnetic field:

]J

]t
52uguJ3~Heff1Hth!1

a

Js
J3

]J

]t
. ~1!

The first term on the right-hand side of Eq.~1! accounts
for the gyromagnetic precession of the magnetic polariza
J, the second term arises from viscous damping. After sp
discretization using the finite element method an equa
similar to Eq.~1! has to be fulfilled at each node of the fini
element mesh.10

The termg is the gyromagnetic ratio, anda is the Gil-
bert damping constant. The thermal field is assumed to b
Gaussian random process with the following statistical pr
erties:

^H th,i
k ,H th,j

l &5«d i j dkld~ t2t8!. ~2!

The average of the thermal field taken over differe
realizations vanishes in each directioni in space. The therma
field is uncorrelated in time, uncorrelated at different no
points~k,l! of the finite element mesh, and uncorrelated in
different direction in space. The strength of the thermal flu
tuations follows from the fluctuation-dissipation theorem:11

«5
2akBT

gJsVi
, ~3!
6 © 2003 American Institute of Physics
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whereVi is the volume surrounding the nodei of the finite
element mesh, andkB is the Boltzmann constant. After dis
cretization we can interpret the soft magnetic element a
collection of interaction magnetic moments, with the m
ments sitting on the nodes of the finite element mesh.
moments interact by magnetostatic and exchange inte
tions, and each moment feels its local effective field. In
dition each magnetic moment feels a thermal fluctuation fi
which is determined by Eq.~3!.

The general form of the Langevin equation can be w
ten as follows:3

dJ~r i ,t !5BbJ~r i ,t !cHdet~r i ,t !dt

1A[BbJ~r i ,t !cdW~r i ,t !, ~4!

whereHdet is the deterministic part of the local field atr i ,
dW are Gaussian random numbers with mean zero and s
dard deviation one, andB@J(r i ,t)# is given by

B@J~r i ,t !#

5
1

11a2

3S a~Jy
21Jz

2! 2Jz2aJxJy Jy2aJxJz

Jz2aJxJy a~Jx
21Jz

2! 2Jx2aJyJz

2Jy2aJxJz Jx2aJyJz a~Jx
21Jy

2!
D .

~5!

We use a semi-implicit method to solve Eq.~4!. The right-
hand side of Eq.~4! is evaluated in the middle of the tim
interval. The magnetization in the middle of the time interv
is

J̄5J~ t1Dt/2!5@J~ t !1J~ t1Dt !#/2. ~6!

If j counts the time step then

t j 115t j1Dt. ~7!

We introduce a new indexn for the functional iteration to
solve the nonlinear equation at each time step. Then11
iteration is defined as

J̄n115J~ t j !1~1/2!~B@ J̄n#Dt1A«B@ J̄n#Dt !. ~8!

FIG. 1. Magnetization for two different temperatures (T5350 and 500 K!.
The bias field is 80 kA/m.
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Here we evaluateB at J̄n . We assumeJ̄05J(t j ). After a few
iterations of Eq.~8! we evaluateJ(t j 11), the magnetic po-
larization att5t1Dt, as

J~ t j 11!52J̄2J~ t j !. ~9!

The last equation follows from Eq.~6!. Finally, we solve the
nonlinear equation by functional iteration.

III. RESULTS

The stochastic Landau–Lifshitz–Gilbert equation
solved for a 150310035 nm3 Permalloy element. The ex
change constantA was set to 1.3310211 J/m, the crystalline
anisotropyK was 5.03102 J/m3, and the saturation polariza
tion Js was 1 T. The damping constant used in the simu
tions wasa50.02. An induced anisotropy was assumed w
its axis parallel to the long axis of the element. The long a
is parallel to thex direction. It is also the direction of the
easy axis bias field. In order to investigate the thermal m
netization noise we apply the following procedure. A sm
field is applied at an angle of 10° to the long axis of t
element. This field is gradually reduced and the equilibriu
state is calculated for each field atT50 K. Then we solve
Eq. ~1! for a given temperature and external field for a peri
of 1 ns. We continue the calculations for several nanoseco
and analyze the magnetization data,Mx(t) for t.1 ns, to
obtain the spin-wave frequencies and thermal noise.

Local random thermal fluctuations lead to a collecti
motion of the magnetization. The magnetization precesse
the end domains leading to an oscillation of the magnet
tion parallel to the long axes. Figure 1 shows the spa

FIG. 2. Magnetization distribution of a 150310035 nm3 platelet at T
5500 K. The time interval between the two images is 0.2 ns.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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average of the magnetization parallel to the long axis, wh
is given by

Mx5
1

VJs
E J"x̂dV. ~10!

Figure 2 gives snapshots of the magnetization distributio
different times. The time interval is 0.2 ns. Figure 3 sho
the Fourier spectra of the magnetization parallel to thex axis
at three different points within the soft magnetic platelet
point in the center of the element, a point on thex axis at a
distance of 5 nm from the short edge, and a point near
corner at a distance of 5 nm near the short edge and 5
near the long edge. At a bias field of 16 kA/m a distin
dominating frequency is found for the point in the corner.
higher bias field~80 kA/m! more spin-wave modes are e
cited. Generally, the Fourier spectra show that the fluct
tions are located near the corners.

The time averaged total magnetization parallel to
long axes,̂ Mx&, decreases almost linearly with increasi
temperature. The slope of^Mx&(T) shows only a weak de
pendence on the bias field.^Mx&(T) decays approximately
by 0.01Ms as the temperature is raised by 100 K.

In order to quantify the thermal fluctuations as a functi
of temperature we calculate

dMx5A^Mx
2&2^Mx&

2, ~11!

where^ & denotes the time average. Following Heinonen,4 the
value ofdMx can be assumed to be proportional to the m

FIG. 3. Fourier spectrum of the magnetization component parallel to
long axis for different points inside a 150310035 nm3 NiFe platelet at 350
K. Top: Hbias516 kA/m, bottom:Hbias580 kA/m.
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netization noise of a sensor element. The giant magnet
sistance~GMR! signal is proportional to the scalar product
the magnetization in the reference layer and the free laye
magnetization of the reference layer is assumed to be fi
and parallel to thex direction,dMx as defined in Eq.~11! is
related to the GMR noise. Figure 4 shows the noise a
function of the easy axis bias field and the temperature.
noise decreases rapidly with the easy axis bias field.
Hbias516 kA/m the noise increase considerably as the te
perature is raised from 150 to 250 K. ForHbias580 kA/m,
the noise increases linearly with temperature.
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FIG. 4. Magnetization noise as a function of the easy axis bias field an
a function of the temperature.
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