Ultrafast switching of magnetic elements using a rotating field

J. Fidler, T. Schrefl, V.D. Tsiantos W. Scholz, D. Suess and H. Forster Institut für Angewandte und Technische Physik, Vienna University of Technology, Vienna, Austria

MOTIVATION

Magnetic switching of small particles and thin films becomes increasingly important. Numerical micromagnetics is an essential tool to optimize magnetic storage media and sensors. The application of these devices requires a profound knowledge of the reversal mechanism. The differences of the magnetisation reversal processes under a constant unidirectional field and under rotational fields are studied using a 3D hybrid finite element/boundary element micromagnetic model. Thermal fluctuations, defects and other forms of disorder as well as eddy currents occurring during the fast switching process are not included in the simulations.

SUMMARY

In nanostructured magnets the switching fields and times are controlled by the geometric shape of the magnets, the intrinsic properties and the orientation and strength of the applied field. The damping parameter $\alpha(H)$ drastically influences the critical switching field and time.

α=0.10 / 10GHz

46th Annual Conference on Magnetism and Magnetic Materials (MMM), Seattle, USA, November 5-8, 2001

http://magnet.atp.tuwien.ac.at