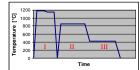
TEM study of (Cu,Zr)-enriched SmCo 2:17 magnets used for high temperature applications

T. Matthias¹, J. Fidler¹, W. Scholz¹, T.S. Rong², I.P. Jones², I.R. Harris², D. Schobinger³, G. Martinek³

¹Institut für Angewandte und Technische Physik, Vienna University of Technology, Austria

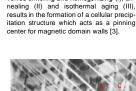

²School for Metallurgy and Materials, Unibersity of Birmingham, United Kingdom

Magnequench AG, Lupfig, Switzerland

Motivation

Sm(Co,Fe,Cu,Zr)z permanent magnets are the best choice for operating temperatures above 300° C because of the high magnetocrystalline anisotropy and the high Curie temperature [1,2]. The analysis of the precipitation structure on a nm-scale shows the importance of a uniformly developed cellular structure.

Schematic heat treatment

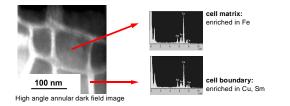

The cellular precipitation structure of Sm(Co,Fe,Cu,Zr), magnets

A Sm₂(Co_{1-x}Fe_x)₁₇ cell matrix phase

B Sm(Co_{1-x}Cu_x)₅₋₇ cell boundary phase

processes during the whole heat treatment.

C Lamella phase



A complex production process, which in-

volves sintering and homogenizing (I), an-

200 nm The microstructure as well as the microchemistry are the key parameters for optimising Sm(Co,Fe,Cu,Zr)₇ high temperature magnets [4]. The geometry of the cellular structure is determined by the annealing time whereas the elemental composition is influenced by diffusion

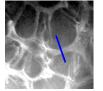
Microstructural TEM study of Sm(Co_{0.76}Fe_{0.14}Cu_{0.08}Zr_{0.04})_{7.6}

46th Annual Conference on Magnetism and Magnetic Materials (MMM), Seattle, USA, November 5-8, 2001

Experimental

Electron nanoprobe analysis (point analysis and linescans) was performed on a FEI FEG Tecnai 200 keV with a point resolution of 1 nm.

Sample A: Sm(Co_{0.85}Fe₀Cu_{0.13}Zr_{0.03})_{7.4} composition optimised for coercivity at 450° C


Sample B: Sm(Co_{0.76}Fe_{0.14}Cu_{0.08}Zr_{0.04})_{7.6} composition optimised for (BH)max at 450° C

Analysis of the Cu and Zr content of Samples A and B revealed the following data

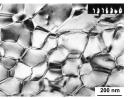
	Sample A	Sample B
	[at.%]	[at.%]
nominal Cu content	11,4	6,8
Cu content in cell matrix phase	3,9	2,9
Cu content in cell boundary phase	15,6	11,9
nominal Zr content	2,4	3,2
Zr content in cell matrix phase	1,9	0,7
Zr content in cell boundary phase	2,4	1

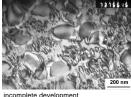
Cu mainly seggregates in the cell boundary phase. The Cu concentration determines the pinning behaviour of the magnet (e.g. poster GG-14).

STEM-dark field image

Energy dispersive x-ray linescan

across a Sm(Co,Cu)5 precipitation.


Cu at.%


The EDX measurements show that the cell matrix phase contains only a small amount of Zr.

Zr is enriched in the lamella phase. A high nominal Zr content results in the formation of very thick lamellae with a composition of Zr21Co66Fe13.

Microstructure and Microchemistry crucially influence the magnetic properties of the mag nets. Only a completely developed microstructure gives rise to a strong pinning field.

complete development

Outlook

The new generation of transmission electron microscopes equipped with field emission gun offer the possibility to analyse the elemental variations on a nm-scale. The influence of the beautions on a nm-scale with the influence of the beaution of the beaution of the second s treatment on the microstructue and the microchemistry are directly observable, which is very important for the development of strong high temperature permanent magnets.

Summary:

- · Microstructure varies in different magnets, depending on composition and heat treatment. · Uniformity of the cellular structure is essential.
- · Minimum thickness of the cell boundary phase is necessary to obtain sufficient coercivity a elevated temperatures.

References:

- [1] Strnat, K. J., Rare earth-cobalt permanent magnets, in "Ferromagnetic Materials", edited by E. P. Wohlfarth and K. H. J. Buschow, North-Holland, 1988, vol. 4, pp. 131-209.
- C.H. Chen, M.S. Walmer, M.H. Walmer, S. Liu, E. Kuhl, G. Simon, J. Appl. Phys. 83, 6706 (1998 [2]
- J. Fidler, JMMM 30, 58-70 (1982) [3]
- [4] W. Tang, Y. Zhang, G.C. Hadiipanavis, H. Kronmüller, J. Appl. Phys. 87, 5308 (2000)

http://magnet.atp.tuwien.ac.at

