TEM-Analysis of Sm(Co,Fe,Cu,Zr)_z magnets for high temperature applications

T. Matthias¹, G. Zehetner¹, J. Fidler¹, W. Scholz¹, T. Schrefl¹, D. Schobinger², G. Martinek²

¹ Institut für Angewandte und Technische Physik, Vienna University of Technology, Austria

² Magnequench AG, Lupfig, Switzerland

Advanced power applications require permanent magnets which are applicable at a working temperature up to 500°C. Because of the high magnetocrystalline anisotropy and the high Curie temperature $Sm(Co,Fe,Cu,Zr)_7$ magnets are the best candidate.

Microstructure

TEM image: viewing axis perpendicular to the c-axis		
Sm ₂ (Co,Fe) ₁₇ ,	Th ₂ Zn ₁₇ type	
Sm(Co,Cu) ₅ ,	CaCu ₅ type	
$\operatorname{Sm}_2(\operatorname{Co},\operatorname{Zr})_{17},$	Th ₂ Ni ₁₇ type	
	is perpendicular Sm ₂ (Co,Fe) ₁₇ , Sm(Co,Cu) ₅ , Sm ₂ (Co,Zr) ₁₇ ,	

TEM image: viewing axis parallel to the c-axis

Microchemistry of cell matrix and cell boundary

cell matrix: enriched in Fe

cell boundary: enriched in Cu

Influence of the Sm content

TEM micrographs of Sm(Co_{0,75}Fe_{0,14}Cu_{0,08}Zr_{0,04})_z with z=8,7 (a) and z=7,6 (b) showing the increasing cell size with decreasing Sm content.

Influence of the Fe content

Microstructure of $Sm(Co_{0,77}Fe_{0,07}Cu_{0,13}Zr_{0,03})_z$ a) z = 7,6: cellular precipitation structure b) z = 6,9: cluster of very small cells and some very large cells

Influence of the Cu content

Cu mainly seggragates in the cell boundary phase, but it has also an influence on the lamella density.

 $Sm(Co_{bal}Fe_{0,14}Cu_xZr_{0,023})_8$ - A high Cu content favours the occurrence of microtwinning instead of the formation of platelets. a) 6,6 at.% Cu, b) 11 at.% Cu

Acknowledgement: This work is supported by the EC project HITEMAG (GRD1-1999-11125) and by the Swiss federal Office for Education and Science (BBW) (contract no. 99.0493)