
Analysis of fast precessional switching in magnetic thin films  
 

Abstract 
The switching process of magnetic recording NiFe thin-films is considered. First, it is illustrated 
through numerical micromagnetic simulations that precessional switching process can be reasonably 
considered a quasi-uniform process, while, in conventional switching process, domain nucleation and 
wall motion are involved in the magnetization reversal dynamics. Second, we used analytical uniform 
mode theory of precessional switching to predict the duration of the applied field pulse. We verified 
that the uniform mode theory provide reasonably good indications on the quasi-uniform precessional 
switching dynamics.  

 
The fast magnetization switching of thin films and nanoelements is one of the fundamental issues in 
spin dynamics studies for its importance in the area of magnetic data storage technologies. 
Traditionally, magnetization reversal in thin films is realized by applying a sufficiently large magnetic 
field almost antiparallel to the initial magnetization state and the resulting reversal dynamics is driven 
by dissipative precesses. Recently, the possibility of using precessional motion of magnetization to 
realize the switching of thin films and particles has been investigated[1,2]. In this kind of switching, 
the in-plane external field is approximately orthogonal to the initial magnetization state and produces a 
torque that drives precessional motion of magnetization; this results in a faster and less energy-
consuming magnetization dynamics. Magnetization reversal is realized by switching the field off 
precisely when precession has brought the magnetization state close to its reversed orientation. 
Therefore, the applied field pulse duration has to be carefully chosen, while in conventional switching 
there is no such need. Although it is generally desired that thin films and nanoelements in magnetic 
storage devices are in almost uniform magnetization states, both conventional switching and 
precessional switching are nonuniform dynamic processes. In this paper, we consider the switching 
process of a permalloy magnetic rectangular thin-film: the thickness is c=5 nm, the major and mean 
edge length are respectively a=500 nm and b=250 nm. The thin-film medium has a uniaxial magneto-
crystalline anisotropy whose easy axis is along the x-axis (long axis), the uniaxial anisotropy constant 
is K1=2·103 J/m3 , the exchange stiffness constant is A=1.3·10-11 J/m, the saturation polarization is Js=1 
T (Ms=795 kA/m) and the damping constant is α=0.02; the exchange length of the material is 

716052 2
0 .)M/()A(l sexc == µ  nm. We assume that magnetization dynamics of the thin-film is 

described by the Landau-Lifshitz-Gilbert equation, namely:  
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where γ is the absolute value of the gyromagnetic ratio, α is the damping constant and effH  is the 
effective field  
 aanexcmeff (.))( HHHHMH +++= , (2) 
 
which takes into account the applied field aH , the exchange field excH , the anisotropy field anH  and 
the magnetostatic (demagnetizing) field mH . In micromagnetic simulations equation (1) is integrated 
numerically using a backward differentiation formula[3]; the spatial discretization is done using the 
finite element method with a mesh consisted of tetrahedrons; the mesh is finer near the corners of the 
thin-film (mesh edge length=5 nm < lexc) where a stronger accuracy is required for the computation of 
magnetostatic field. A hybrid finite element boundary element method[4] is used to solve the 
magnetostatic problem. First, we performed micromagnetic simulations of conventional (damping)  
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and precessional switching process for the thin-film; the external field is applied respectively 
antiparallel and orthogonal to the easy axis, as sketched in figure 1. We compared two aspects of the 
switching processes: the switching speed and the uniformity of the magnetization during the reversal 
process. We consider, as a measure of the switching speed, the time instant t0 at which the average 
component of mx is zero after the application of the external field (the external field strength is the 
same in both the simulations). In figure 2 one can observe the behavior of the average mx component 
until it reaches zero, showing that the precessional switching dynamics is much faster (t0=0.09 ns) than 
damping switching’s (t0=0.17 ns). This is due to the different nature of the mechanism driving 
magnetization motion in the two processes: in conventional switching there is only one equilibrium 
configuration after the application of the external field, namely the reversed state, so the switching 
process is a kind of relaxation process towards the equilibrium and therefore the damping process is 
crucial; in precessional switching the main role is played by the magnetic torque acting on the 
magnetization, which causes a fast precessional motion around the effective field driving the 
magnetization back and forth between the initial and the reversed state; in most cases this process is so 
fast that dissipative effects can be neglected. 
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As far as the uniformity of magnetization is concerned, we consider the sum of the square values of 
the average magnetization components 222 ><+><+>< zyx mmm  (< > means spatial average) 

as a measure of the uniformity of the switching process; the results are reported in figure 3-4. One can 
easily observe that precessional switching (figure 3-4a) is a quasi-uniform process, because the sum of 
the square values of the average magnetization components remain almost constant during time and 
close to unity, whereas for damping switching it decreases rapidly towards zero, showing the 
occurring of domain nucleation and domain wall motion (figure 4b). Thus we can conclude that for 
precessional switching, in our case of thin-film medium, one can reasonably apply the uniform mode 
theory to predict the duration of the external field pulse, which is necessary to achieve successful 
switching. To this end, let us now consider a uniformly magnetized ellipsoidal particle: in this case the 
magnetostatic field can be expressed analytically using the so-called demagnetizing factors Nx, Ny, Nz. 
The thin-film is modeled by an ellipsoidal particle with zx NN << , zy NN << . The magnetization 

dynamics is governed by Landau-Lifshitz-Gilbert equation:  

Figure 2. Numerical results. Comparison between damping 
(dashed line) and precessional (solid line) switching: time for 
average mx component to reach zero from the starting 
configuration for Ha=19.51 kA/m. 

Figure 3. Numerical results. Plot of 
222 ><+><+>< zyx mmm  vs time in the 

interval (0,t0) for damping (right) and precessional 
switching (left). 

Figure 1. (a) Conventional (damping) switching process. (b) Precessional switching process 
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where time is measured in units of 1−)M( sγ  and the (normalized) effective field seffeff M/Hh =  has 
now the following expression, provided that the exchange field is zero:  
 yazzzyyyxxxeff hmDmDmDh eeee +−−−= ,  (4) 

The coefficient Dx < Dy < Dz take into account the demagnetizing effects and crystalline anisotropy, ha 
is the normalized applied field and ey the unit vector along the cartesian axis y. The relationship 
between the material parameters and the coefficients Dx , Dy , Dz are:  
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We follow now the line of reasoning used in [5]: for short field pulses and small damping, it is 
possible to neglect the dissipative effect with respect to the magnetic torque. For this reason, we 
assume 0=α  in (3). Eq. (3), in the conservative case, admits the two following integrals of motion:  
 1222 =++ zyx mmm  (6) 
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representing respectively magnetization modulus conservation and energy conservation, being g0 the 
initial energy. By considering the appropriate linear combination of equations (6) and (7), the 
following expressions can be obtained:  
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The fact that xm  and zm  can be expressed as function of ym , allows to write a differential equation 

for ym  only, which can be solved by separation of variables using the appropriate Jacobi elliptic 

functions. In particular, the period of the oscillation can be derived. To this end, we need the 
expression of the roots of the polynomials )m(P y1  and )m(P y3 , which, in our case, are all real:  
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It is shown in [5] that the period T  of the oscillation is:  

 218 /
xyyz )])()(DD)(DD)[(k(KT −

−+−+ −−−−= µµνν  (12) 

where )])(/[()])([(k −+−+−+−+ −−−−= µµννµννµ2 is the modulus of the elliptic function and 

)k(K  is the complete elliptic integral. Consequently, the switching time is defined as half period 

Figure 4. Numerical results. (a) Precessional switching: magnetization vector field at t=t0. (b) Damping 
switching: magnetization vector field at t=t0. The applied field strength is m/kA.Ha 5119= . (c) S-state 

(top), C-state (bottom). 



2/TTs = . It is also shown in [5] that a critical value of the external applied field exists and that 

below this value 2/)DD(h xycrit −= , the precessional switching of the particle does not occur; it is 

important to underline that crith  is half the critical Stoner-Wohlfarth value xySW DDh −= . 

We performed a set of micromagnetic numerical simulations of the precessional switching process for 
the values of aH  and sT  specified in table 1. This table reports the switching time sT , analitically 
computed using eq. (12), for different values of aH . 

SWa h/h  1.0  1.1  1.2  1.3  1.4  1.5  

]m/kA[Ha  13.01  14.31  15.61  16.91  18.21  19.51  

]ns[Ts  0.194  0.181  0.171  0.162  0.155  0.149  

 
 
 

The simulations were started from two different initial magnetization configurations which can be 
typically observed in the experiments on thin-film media: the so-called S-state and C-state (fig. 4(c)). 
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In figure 5 a comparison between the analytical solution of eq. (3) with 0=α , the numerical solution 
of eq. (3) with 020.=α  for a uniformly magnetized thin-film shaped ellipsoidal particle (macrospin 
model) and the finite element solution of eq. (1) is reported for an applied field strength 

SWa h.h ×= 51 . In the undamped case, at time sTt =  the magnetization is exactly in the reversed 
position, so, switching off the external field, it remains definitely in this state; if the damping term is 
added in equation (3), one can see that after sTt =  there is a small oscillation of >< xm  because the 
system is not yet in the minimum energy state; in the general nonuniform case one can easily see that 
the uniform mode theory provide anyway a reasonably good information about the duration of the 
field pulse, but the presence of nonuniform modes produces an oscillation that can bring 
magnetization back to the initial state as one can see in figures 6(a)-(b). For this reason, a field 
strength SWa h.h ×= 51  is required to achieve successful switching starting from either an S-state or a 
C-state. We observe that this value is moderately larger than the critical value provided by uniform 
mode theory, 2/hh SWcrit = .  
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Figure 5. Analytical and numerical 
solutions of Landau-Lifshitz-Gilbert 
equation. Plot of >< xm  vs time. 

SWa h.h ×= 51 , 31021 −×= .D x , 

01750.D y = , 97630.D z = . 

Figure 6. Numerically computed >< xm  as a function of 

time. S-state (a), C-state (b) initial condition. (In both figures) 
symbol “⁭” for SWa hh = ; “O” for SWa h.h ×= 11 ; “X” for 

SWa h.h ×= 21 ; “ ∇ ” for SWa h.h ×= 31 ; “◊” for 

SWa h.h ×= 41 ; “∆” for SWa h.h ×= 51 . 

(a)    (b) 

Table 1. Analytically computed external field pulse duration Ts for different values of the external field 
strength Ha. These values are used in micromagnetic simulations of precessional switching. 


