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ABSTRACT

A path finding method and a stochastic time integration scheme for the simulation of thermally
activated magnetization processesare introduced. The minimum energy path and the ssdde
points for the thermally induced transitions between the ground states of NiFe magnetic nano-
elements are cd culated.

INTRODUCTION

With decreasing size of magnetic nanostructures thermal effeds becomeincreasingly
important. Prominent examples are magnetization noisein magnetic sensor elements [1-3] and
the thermal stability of magnetic MRAM (Magnetic Random Access Memory) cells [4] or
magnetic storage media[5]. Magnetic sensors require ahigh sensitivity so that small magnetic
fields can be detected. On the other hand thermal fluctuations which will lead to therma noise
should be suppressed asgood as possible. Thefreelayer of amultiplayer sensor element is soft
magnetic hand may have asize well below one micrometer. Thermally induced magnetization
processes may cause local or globa magnetization rotations which cause the magnetization
noise. With decreasinglatera extension of the dementsthe energy barrier which hinders
spontaneous changes of the magnetization decreases. Magnetic storage ekementsrequire alow
and well defined switchingfield which in practiceislimited by the aurrent through thewriteline
in an array of MRAM cells. On the other hand the shape or the induced anisotropy should
guarantee a life time of a stored bit of about 10 yeas. Again the erergy barrier for thermally
induced magnetization reversa decreases with increasing size of the storage elements. The
corresponding time scales differs by several orders of magnitude: Thermal noise arises on atime
scd e of afew nanoseconds; thermally induced switching of the magnetization over energy
barriers extends over secondsto yeas. Random therma fluctuations of the magnetization are the
underlying physicd process which cause both therma noise and spontaneous switching. The
stochastic fluctuations arise from the interplay between the | attice vibrations and the
magneti zation.

A micromagnetic system will be dose to alocad minimum the total magnetic Gibb’s free
energy. Thermd fluctuations of the magnetization cause the magnetization to wander around
near this minimum. Occasionaly the system will read aregion next to asaddle point. The
system may crossthe energy barrier and noveinto the basin of attraction of a different energy
minimum. This process can be described by the Neel-Brown theory [6,7]. The relaxation time,

T = f, exp(E, /ksT), istheinverse of probability per unit time for crossing the barrier E,. The

attempt frequency, fo, depends on material parameters, like anisotropy, particle shape, and
damping [8]. Its value, which ranges from fo = 10° Hz to fo = 10* Hz, sets the time scde for

thermall y assisted magnetizationreversa, 7, = f,* =1ns.



The theoretical treatment of thermally induced magnetization processes starts from the
stochastic Landau-Lifshitz Gilbert equation and the corresponding Fokker-Planck equation[7].
The energy barrier can be cdculated for coherent rotation in single domain particlesand the
formation of reversed domains in thinferromagnetic wires. The attempt frequeancy can be
estimated solving the Fokker-Planck equation numericdly or aralyticdly [ 7-10]. Alternatively,
the stochastic Landau-Lifshitz Gilbert equation can be solved numerically for short timescaes
and small systems [11-14]. Recently, numerical solutions of the stochastic Landau-Lifshitz
Gilbert equation were reported for extended micromagnetic systems|[3,14]. Zhu [3] anayzed the
magnetization noise in submicron sized sensor elements based onthe numerical solution of the
stochastic Landau-Lifshitz Gilbert equation. The time integration of the stochatistic Landau-
Lifshitz equation isrestricted to small time scdes and thusis proper toal to anayze
magnetization noise. The cadculation of long term thermd effects needs a detailed
characterization of the energy landsape along the mog probable pah which istaken by the
system to cross the energy barrier. Berkov [15] calculated the transition path of interacting single
domain particles, minimizing the action a ong the peth. He showed thata dired minimizaion o
the action may aso give paths through loca maximawhich haveto be excluded. Ren [16]
proposed an elastic band method to cal culate a minimum path in micromagnetic systems.
Starting from an initia guessfor the path which connects two local minimaof the system, a
highly probable path is found moving the points aong the path according to an algorithm which
resembles tensioning an elastic band acrossa mountain. Varients of elastic band methods
methods are commonly used to cdculate transitionratesin physica chemistry [17]. Dittrich an
co-workers[19] originaly applied the elastic band method to calculate energy barriersand
saddle pointsin complex micromagnetic systems like discrete perpenpendicular recording media

In this work we apply both stochastic time integration and path finding techniques in the
framework of the finite dement method, in order to simulate thermal effectsin magnetic
nanostructures. Thusit is possible to take into account complex geometries and redi stic dement
shapes. Both methods are complementary. The stochastic time integration is restricted to
simulation times of about 10 ns. As aconsequence the caculation of barrier aossing by
stochastic time integration is limited to small energy barriers. The transition rate for large
barriers can be estimated fromthe barrier height which can be cal culated from the minimum
energy path. In addition to the energy barrier, the dastic band method providesaglobal view of
the energy landscape suchas locd minima and saddle point along the path. The magnetization
processes as computed from the stochastic time integration method and the minimum energy
path are compared for transitions between different ground statesin magnetic nano-elements.

MICROMAGNETIC AND NUMERICAL BACKGROUND

The micromagnetic description of the system starts from the total magnetic Gibbs' free
energy [19]

E=fad Cu) grel-(ml-S em)obmdav. o

E isthe sum of the exchange erergy, the anisotropy energy, the stray field energy, and the
Zeeman energy, u denotes the unit vector parallel to the magnetizaion, A isthe exchange
constant, K; isthe uniaxial magnetocrystalline anisotropy constant, and Jsis the spontaneous



magnetic polarization. The integra (3) is over the total volume of the magnetic particles. In a
stationary state the magnetic system occupies aloca minimum of (1). Owingto thermal
activation the system may overcome an energy barrier and spontaneously move towards a
different locd minimum of the energy.

We use the finite element method to evaluate E for complex magnetic systems. The
diredion cosines of the magnetization, ux, are interpolated by piecawiselinea functions on a
tetrahedral finite element mesh. In arder to calculate themagnetic stray field, Hs, we use ahybrid
finite element / bourdary element method [20. The simulation of thetime evolution of the
magneti zation requires to cdculate the effectivefield, He, defined by the neggtive variational
derivative of E. The effectivefield onthe rodesof the finite dement mesh may beapproximated
using abox scheme
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where m' is the magnetic moment associated with node| of the finite element mesh. The
stochastic Landau-Lifshitz equation is asystem of 3N Langevin equations with multipli cative
noise
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where theindicesi,j,k run over the three space directions, and the index| = 1,...,N runs over the
number of nodes. The drift term, A', isthe right hand side of the deterministic Landau-Lifshitz-

Gilbert equation. a is the Gil bert damping constant and y is the gyromagnetic ratio. H!, isthe
random thermal field. The thermal field is assumed to be a Gaussian random process with the

following statisticd properties:
(Hi ) =0 and (H, OH},, (1)) = 2D5, 8,8t -t) (6)

The average of the thermal field, take over different redli zation, vanishes in each directioni
in space. The thermal field is uncorrelated in time and space The strength of the thermal
fluctuations follow form the fluctuation-dissipation theorem [11]:
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Numericdly the equations(3) to (5 are be solved using semi-implicit time integration
method [21]. The timeisdivided into alattice of discrete point t,. The Langevin equation is
solved in the time interval t, to . with the initial condition u =u (t,) . The right hand side of

(5) isevaluated at themidpoint t, = (t, +t,,,)/2 =t, + At/ 2. Theupdate of the direction cosines
isgiven by

AU _Ai ( ul l’—II’—II+l )At+ZBlk( _'I l’—II’—II+l )Achk (8)
with the noise integra
thet
AH tlh,k = IHtlh,k (tdt. 9)
tn

The magnetization directions at themidpoint of thetime interval is
=l t) +ul () 2= Ul t,) +Aur 2, (10)

assuming linearization of u' within the time interval. The midpoint value, T', isgiven implicitly
by the equations (8) and (10) which is solved by functional iteration. Numerical tests show that
about five iterations are sufficient to gain the required accuracy of 10°. From the midpoint value
the magnetization at the timet. is calculated from (10) and then normalized:

0 (t,,) =20 -u/(t,), u' =d/. (112)

A common feature of path finding methods is the discrete representation of the ath
connecting the inita state of the system with itsfina state. In mi cromagnetl cs we represent the
magnetic states of asystem by the set of magnetic momentsM ={....m™, m', m"**...} The
index | = 1,...,N runs over al nodes of the finite element mesh. For the mnflguratlon Space we
use polar coordinates of dimension 2N. First we construct asequence of magnetic statesin such a
way as to form adiscrete representation of apath from the initial magnetization state, M, to the
final magnetization state, M. An optimization algorithm is then applied until at any point along
the path the gradient of the energy is only pointing along the path. This path is caled minimum
energy path which means that the energy is gationary for any degree of freedom perpedicular to
the path. The minimum energy path typicaly represents the path with the greatest statistical
weight. From this path statisticd quantities as for example transition rates for the thermally
induced magnetization reversa can be estimated.

Henkelman and Jonsson proposed the nugded elastic band method to calculade minimum
energy paths [17]. We represent a path by a squence of images. An intitial path isassumed
which conneds the initia magnetization state M = M® with the final magnetlzatl on state
M® =M™ Theindex k runsfrom 1 to m. The path is optimal, if for any imageM ® the gradient
of the energy is only pointing along the path or in other words the mmponent of the energy
gradient normal to the path, D, is zero. If t denactes the unit tangent vector along the path, the
optima path have thefollowing property, aminimum energy path hasthefollowing property



D® =OEM®) - [DE(M (9 [ﬂ] t=0, fork=1...,m 12

The optimal path can be found using an iterative scheme. In each iteration step the images
towards lower energy in adirection perpendicular to the path. So theimage M® is moved into
the diredion, —-D¥. Thisiterative scheme numerically is very ineffective. Thus instead we solve
asystem of ordinary differential equations

(k)
0'\2_t:_D<k> fork=2,...,(m-1) (13
using an implicit, variable order, variable time step time integration method [22]. Here the timet
isintroduced for numericd convenience and has no physical meaning. In keep an equa distance
between successive images aspring force may be introduced [17].

RESULTS

Small rectanguar NiFe elements show two distinct ground: The Sstate and the C-state.
Thermal fluctuations may induce atransition between the different states. The C-state hasa
dightly lower energy than the S-state. Figure 1 shows the magnetic states during the thermally
induced switching from the S-state to the C-state. The magnetization distributions are caculated
from the numerical solution of the stochastic Landau-Lifshitz Gilbert equation at atemperature
of T = 350K. The sequence of magnetization configurationsin figure 1 covers atime of 5 ns.

The transition between thegrounds dateswere aso cdculated using the pah finding
method. The initia path was constructed connecting the two possble Sstates. Along the initial
path the different images are obtained by linear interpolation. Then aminimum energy path is
found solving equation (13). Figure 2 shows the energy along thefinal path. In addition the
magneti zation states alongthe path are shown. The path finding algorithm identifies the C-state
as aglobal energy minimum. The C-state is separated from the S states by saddle points. The
comparison of the magnetization states presented in figure 1 and in figure 2 clealy shows that
the magnetic states along the minimum energy path correspond to the magnetic stateswhich are
visited during the stochastic motiond the magnetization according to the Langevin equation.
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Figure 1. Magnetization states visited duringthe solution of the stochastic Landau-Lifshitz
Gilbert equation. The NiFe element has an extension of 150 x 100 x5 nm3. A induced anisotropy
of K1 =500 JJm3 was assumed parallel tothelong ais. Thegrey scales maps the magnetization
component parall el to the short axis of the dement.
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Figure 2. Magnetization configurations and energy along the minimum energy path. The
temperature is T = 350K. The saddle point with the open symbadlsis not shown on the left hand
side.
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