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ABSTRACT 

A path finding method and a stochastic time integration scheme for the simulation of thermally 
activated magnetization processes are introduced. The minimum energy path and the saddle 
points for the thermally induced transitions between the ground states of NiFe magnetic nano-
elements are calculated. 

INTRODUCTION 

With decreasing size of magnetic nanostructures thermal effects become increasingly 
important. Prominent examples are magnetization noise in magnetic sensor elements [1-3] and 
the thermal stabil ity of magnetic MRAM (Magnetic Random Access Memory) cells [4] or 
magnetic storage media [5]. Magnetic sensors require a high sensitivity so that small magnetic 
fields can be detected. On the other hand thermal fluctuations which wil l lead to thermal noise 
should be suppressed as good as possible. The free layer of a multiplayer sensor element is soft 
magnetic hand may have a size well below one micrometer. Thermally induced magnetization 
processes may cause local or global magnetization rotations which cause the magnetization 
noise. With decreasing lateral extension of the elements the energy barrier which hinders 
spontaneous changes of the magnetization decreases. Magnetic storage elements require a low 
and well defined switching field which in practice is limited by the current through the write li ne 
in an array of MRAM cells. On the other hand the shape or the induced anisotropy should 
guarantee a life time of a stored bit of about 10 years. Again the energy barrier for thermally 
induced magnetization reversal decreases with increasing size of the storage elements. The 
corresponding time scales differs by several orders of magnitude: Thermal noise arises on a time 
scale of a few nanoseconds; thermally induced switching of the magnetization over energy 
barriers extends over seconds to years. Random thermal fluctuations of the magnetization are the 
underlying physical process which cause both thermal noise and spontaneous switching. The 
stochastic fluctuations arise from the interplay between the lattice vibrations and the 
magnetization. 

A micromagnetic system wil l be close to a local minimum the total magnetic Gibb’s free 
energy. Thermal fluctuations of the magnetization cause the magnetization to wander around 
near this minimum. Occasionally the system will reach a region next to a saddle point. The 
system may cross the energy barrier and move into the basin of attraction of a different energy 
minimum. This process can be described by the Neel-Brown theory [6,7]. The relaxation time, 
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attempt frequency, f0, depends on material parameters, like anisotropy, particle shape, and 
damping [8]. Its value, which ranges from f0 = 109 Hz to f0 = 1012 Hz, sets the time scale for 
thermally assisted magnetization reversal, ns 11
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The theoretical treatment of thermally induced magnetization processes starts from the 
stochastic Landau-Lifshitz Gilbert equation and the corresponding Fokker-Planck equation [7]. 
The energy barrier can be calculated for coherent rotation in single domain particles and the 
formation of reversed domains in thin ferromagnetic wires. The attempt frequency can be 
estimated solving the Fokker-Planck equation numerically or analytically [7-10]. Alternatively, 
the stochastic Landau-Lifshitz Gilbert equation can be solved numerically for short time scales 
and small systems [11-14]. Recently, numerical solutions of the stochastic Landau-Lifshitz 
Gilbert equation were reported for extended micromagnetic systems [3,14]. Zhu [3] analyzed the 
magnetization noise in submicron sized sensor elements based on the numerical solution of the 
stochastic Landau-Lifshitz Gilbert equation. The time integration of the stochatistic Landau-
Lifshitz equation is restricted to small ti me scales and thus is proper tool to analyze 
magnetization noise. The calculation of long term thermal effects needs a detai led 
characterization of the energy landscape along the most probable path which is taken by the 
system to cross the energy barrier. Berkov [15] calculated the transition path of interacting single 
domain particles, minimizing the action along the path. He showed that a direct minimization of 
the action may also give paths through local maxima which have to be excluded. Ren [16] 
proposed an elastic band method to calculate a minimum path in micromagnetic systems. 
Starting from an initial guess for the path which connects two local minima of the system, a 
highly probable path is found moving the points along the path according to an algorithm which 
resembles tensioning an elastic band across a mountain. Varients of elastic band methods 
methods are commonly used to calculate transition rates in physical chemistry [17]. Dittrich an 
co-workers [19] originally applied the elastic band method to calculate energy barriers and 
saddle points in complex micromagnetic systems like discrete perpenpendicular recording media. 

In this work we apply both stochastic time integration and path finding techniques in the 
framework of the finite element method, in order to simulate thermal effects in magnetic 
nanostructures. Thus it is possible to take into account complex geometries and reali stic element 
shapes. Both methods are complementary. The stochastic time integration is restricted to 
simulation times of about 10 ns. As a consequence the calculation of barrier crossing by 
stochastic time integration is limited to small energy barriers. The transition rate for large 
barriers can be estimated from the barrier height which can be calculated from the minimum 
energy path. In addition to the energy barrier, the elastic band method provides a global view of 
the energy landscape such as local minima and saddle point along the path. The magnetization 
processes as computed from the stochastic time integration method and the minimum energy 
path are compared for transitions between different ground states in magnetic nano-elements. 

MICROMAGNETIC AND NUMERICAL BACKGROUND 

The micromagnetic description of the system starts from the total magnetic Gibbs’ free 
energy [19] 
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E is the sum of the exchange energy, the anisotropy energy, the stray field energy, and the 
Zeeman energy; u denotes the unit vector parallel to the magnetization, A is the exchange 
constant, K1 is the uniaxial magnetocrystalline anisotropy constant, and Js is the spontaneous 



magnetic polarization. The integral (3) is over the total volume of the magnetic particles. In a 
stationary state the magnetic system occupies a local minimum of (1). Owing to thermal 
activation the system may overcome an energy barrier and spontaneously move towards a 
different local minimum of the energy. 

We use the finite element method to evaluate E for complex magnetic systems. The 
direction cosines of the magnetization, uk, are interpolated by piecewise linear functions on a 
tetrahedral finite element mesh. In order to calculate the magnetic stray field, Hs, we use a hybrid 
finite element / boundary element method [20]. The simulation of the time evolution of the 
magnetization requires to calculate the effective field, Heff, defined by the negative variational 
derivative of E. The effective field on the nodes of the finite element mesh may be approximated 
using a box scheme 

l

l
e

E

m
H

∂
∂−=

0
ff

1

µ
, (2) 

where ml is the magnetic moment associated with node l of the finite element mesh. The 
stochastic Landau-Lifshitz equation is a system of 3N Langevin equations with multipli cative 
noise 
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where the indices i,j,k run over the three space directions, and the index l = 1,…,N runs over the 
number of nodes. The drift term, l

iA , is the right hand side of the deterministic Landau-Lifshitz-

Gilbert equation. α is the Gilbert damping constant and γ is the gyromagnetic ratio. l
thH  is the 

random thermal field. The thermal field is assumed to be a Gaussian random process with the 
following statistical properties: 
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The average of the thermal field, take over different reali zation, vanishes in each direction i 
in space. The thermal field is uncorrelated in time and space. The strength of the thermal 
fluctuations follow form the fluctuation-dissipation theorem [11]: 
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Numerically the equations (3) to (5) are be solved using semi-implicit time integration 
method [21]. The time is divided into a lattice of discrete point tn. The Langevin equation is 
solved in the time interval tn to tn+1 with the initial condition )( n
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(5) is evaluated at the midpoint 2/2/)( 1 ttttt nnnn ∆+=+= + . The update of the direction cosines 
is given by 
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with the noise integral 
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The magnetization directions at the midpoint of the time interval is 
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assuming linearization of l
iu  within the time interval. The midpoint value, l

iu , is given implicitly 
by the equations (8) and (10) which is solved by functional iteration. Numerical tests show that 
about five iterations are sufficient to gain the required accuracy of 10-5. From the midpoint value 
the magnetization at the time tn+1 is calculated from (10) and then normalized:  
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A common feature of path finding methods is the discrete representation of the path 
connecting the inital state of the system with its final state. In micromagnetics we represent the 
magnetic states of a system by the set of magnetic moments M = { …,ml-1, ml , ml+1,…} .The 
index l = 1,…,N runs over all nodes of the finite element mesh. For the configuration space we 
use polar coordinates of dimension 2N. First we construct a sequence of magnetic states in such a 
way as to form a discrete representation of a path from the initial magnetization state, M(i), to the 
final magnetization state, M(f). An optimization algorithm is then applied until at any point along 
the path the gradient of the energy is only pointing along the path. This path is called minimum 
energy path which means that the energy is stationary for any degree of freedom perpedicular to 
the path. The minimum energy path typically represents the path with the greatest statistical 
weight. From this path statistical quantities as for example transition rates for the thermally 
induced magnetization reversal can be estimated. 

Henkelman and Jónsson proposed the nugded elastic band method to calculate minimum 
energy paths [17]. We represent a path by a sequence of images. An intitial path is assumed 
which connects the initial magnetization state M(i) = M(1) with the final magnetization state 
M(f) = M(m). The index k runs from 1 to m. The path is optimal, if for any image M(k) the gradient 
of the energy is only pointing along the path or in other words the component of the energy 
gradient normal to the path, D, is zero. If t denotes the unit tangent vector along the path,  the 
optimal path have the following property, a minimum energy path has the following property 
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The optimal path can be found using an iterative scheme. In each iteration step the images 
towards lower energy in a direction perpendicular to the path. So the image M(k) is moved into 
the direction, –D(k). This iterative scheme numericall y is very ineffective. Thus instead we solve 
a system of ordinary differential equations 
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using an implicit, variable order, variable time step time integration method [22]. Here the time t 
is introduced for numerical convenience and has no physical meaning. In keep an equal distance 
between successive images a spring force may be introduced [17].  

RESULTS 

Small rectangular NiFe elements show two distinct ground: The S-state and the C-state. 
Thermal fluctuations may induce a transition between the different states. The C-state has a 
slightly lower energy than the S-state. Figure 1 shows the magnetic states during the thermally 
induced switching from the S-state to the C-state. The magnetization distributions are calculated 
from the numerical solution of the stochastic Landau-Lifshitz Gilbert equation at a temperature 
of T = 350K. The sequence of magnetization configurations in figure 1 covers a time of 5 ns. 

The transition between the grounds states were also calculated using the path finding 
method. The initial path was constructed connecting the two possible S-states. Along the initial 
path the different images are obtained by linear interpolation. Then a minimum energy path is 
found solving equation (13). Figure 2 shows the energy along the final path. In addition the 
magnetization states along the path are shown. The path finding algorithm identifies the C-state 
as a global energy minimum. The C-state is separated from the S states by saddle points. The 
comparison of the magnetization states presented in figure 1 and in figure 2 clearly shows that 
the magnetic states along the minimum energy path correspond to the magnetic states which are 
visited during the stochastic motion of the magnetization according to the Langevin equation. 
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Figure 1. Magnetization states visited during the solution of the stochastic Landau-Lifshitz 
Gilbert equation. The NiFe element has an extension of 150 x 100 x 5 nm³. A induced anisotropy 
of K1 = 500 J/m³ was assumed parallel to the long axis. The grey scales maps the magnetization 
component parallel to the short axis of the element.  



 

 
 

Figure 2. Magnetization configurations and energy along the minimum energy path. The 
temperature is T = 350K. The saddle point with the open symbols is not shown on the left hand 
side. 
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