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Abstract

Domain wall pinning is the coercivity mechanism of permanent magnets used

in high temperature applications. In SmCo based magnets domain walls get

trapped at the cellular precipitation structure causing a high coercive field.

The motion of domain walls and their propagation velocity are important in

soft magnets as used in sensor applications. A finite element micromagnetic

algorithm was developed to study the motion of domain walls in complex

microstructures. The cellular microstructure of SmCo magnets or the cylin-

drical soft wires can be easily built using tetrahedral finite elements. The

pinning of the domain walls has been studied for different material composi-

tions. Attractive and repulsive domain wall pinning are observed and their

behaviour for increasing thickness of the precipitation structure is explained.
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The motion of domains in magnetic nanowires was calculated using adaptive

mesh refinement. The wall velocity strongly depends on the domain wall

structure. Transverse and vortex walls have been observed and their velocity

in wires of different thickness has been studied.
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1 Introduction

Magnetic domain walls are a key feature of ferromagnetic materials and their

behaviour determines the properties and performance, which are exploited in

many applications. They separate different regions of uniform magnetization

and these magnetic domains can shrink and expand by moving the domain

walls.

The performance of permanent magnets is characterized by the coercive

field, for example. If only a small external magnetic field is required to nucle-

ate a domain of reversed magnetization and move the domain wall through

the magnet, it has a low coercive field and is referred to as magnetically

soft. However, if there is some kind of hindrance to the motion of domain

walls, the coercive field is increased and the material becomes interesting as

a permanent magnet.

This mechanism is called “domain wall pinning” and Samarium-Cobalt

type permanent magnets, which have been discovered in the 1960’s by Strnat

and coworkers [1], are a well known example for “pinning controlled” mag-

nets [2, 3]. Their excellent magnetic properties are due to the high magnetic

moment of Sm and Co as well as the high magnetocrystalline anisotropy.

The high Curie temperature of 720 ◦C for SmCo5 and 820 ◦C for Sm2Co17 [4]

makes it the best material currently available for high temperature mag-

nets [5, 6, 7]. The micromagnetic model, which has been used for our simu-

lations, is described in section 2 and the results are discussed in section 3.

Domain walls in magnetic nanowires are also a key feature of magneto-
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electronic devices and magnetic sensors based on the magnetoresistive effect.

We have studied their behaviour in Co nanowires using adaptive mesh refine-

ment [8]. The nucleation of reversed domains and their expansion by domain

wall motion is calculated by solving the Gilbert equation of motion, which is

explained in section 2. Two different types of domain walls have been found

for different wire diameters and the velocity of the walls is strongly influenced

by the damping constant. These results are presented in section 4.

2 Finite Element Micromagnetics

In this work the domain wall pinning and the the domain wall motion were

calculated using a hybrid finite element / boundary element technique.

The simulation of dynamic domain wall processes must take into account

gyromagnetic precession of the magnetic polarization vector J in the effec-

tive field Heff and damping. The effective field is given by the variational

derivative Heff = −δEt/δJ of Gibbs’ free energy

Et =
∫ [

A
3∑
i=1

(∇βi)2 −Ku (u · β)2 − 1

2
J ·Hd − J ·Hext

]
dV . (1)

We have taken into account the contributions of exchange energy (A de-

notes the exchange constant and βi the direction cosines of the magnetic

polarization vector), magnetocrystalline anisotropy energy (Ku is the mag-

netocrystalline anisotropy constant and u the anisotropy axis), magnetostatic

energy (the magnetostatic field Hd is calculated using a scalar potential) and

Zeeman energy.
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The boundary conditions for the interfaces between regions with different

magnetic properties [9, 10, 11] are implicitly included in the effective field.

Thus, they need no special attention during the time integration.

The time evolution of the magnetic polarization is described by the

Gilbert equation of motion

∂J

∂t
= −|γ|J×Heff +

α

Js

J× ∂J

∂t
, (2)

where the first term describes the gyromagnetic precession in the effective

field and the second the damping of the motion.

3 Domain Wall Pinning

With the technique described in the previous section the domain wall pinning

in precipitation hardened Sm(Co,Fe,Cu,Zr)z magnets has been investigated.

The magnetic properties of this material are determined by the fine cell

morphology of the cellular precipitation structure with rhombohedral cells of

Sm2(Co,Fe)17 with a typical diameter of 100-200 nm, which are separated by

a boundary phase of Sm(Co,Cu,Zr)5−7 [12]. The cellular precipitates act as

pinning sites for magnetic domain walls, where their motion is stopped until

the external field is increased above the pinning field. This behaviour can be

observed in Lorentz electron micrographs [13].

A finite element model of the microstructure of Sm(Co,Fe,Cu,Zr)z [14,

15, 16] has been developed. It consists of 2× 2× 2 rhombohedral cells with

a spacer layer for the cell boundary phase in between (see fig. 1). The edge
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length e and the “corner angle” β of the rhombohedrons as well as the thick-

ness t of the precipitation are variable. The “space diagonal” D, is parallel

to the easy axis. The domain wall of the initial magnetization distribution

of our simulations lies in the plane, which is indicated by the thick lines,

and separates two antiparallel magnetic domains with their magnetization

parallel to the easy axis.

The difference in composition and crystal structure between the cells and

the cell boundary phase gives rise to a difference in the magnetocrystalline

anisotropy. As a result it is energetically favorable for a magnetic domain wall

to either stay in the cell boundary phase (“attractive domain wall pinning”

if the domain wall energy is lower) or just inside the cells (“repulsive domain

wall pinning” if the domain wall energy in the cell boundary phase is higher

than that in the cells) [17].

The following material parameters for 300 K [4] have been assumed: For

the cells (“2:17” type) Js = 1.32 T, A = 14 pJ/m, K1 = 5 MJ/m3. For the

cell boundary phase (“1:5” type) we have used Js = 0.8 T, A = 14 pJ/m,

K1 = 1.9 MJ/m3. Thus, the exchange length is 1.7 nm in the cells and 2.7 nm

in the cell boundary phase. The resulting domain wall width is 5.3 nm in

the cells and 8.5 nm in the cell boundary phase.

By varying the anisotropy constant K1 of the precipitation between

0.4 MJ/m3 (to mimic almost isolated cells or a close to paramagnetic - Cu

rich - intercellular phase, A and Js have also been reduced) and the value for

the cells we have studied the influence of the material parameters. The de-

magnetization curves in figure 2 have been obtained for cells with e = 50 nm

7



and β = 60◦, which gives D ≈ 125 nm, and t = 5 nm. The strongest pinning

effect is found for very low values of the anisotropy constant in the intercellu-

lar phase (horizontal plateau in the demagnetization curve in figure 2). As K1

approaches the value for the cells (2:17 phase) the pinning effect disappears.

“Repulsive pinning” is found, if the magnetocrystalline anisotropy of the

intercellular phase is larger than that of the cells.

The demagnetization curves for repulsive pinning and different values

of the anisotropy constant of the intercellular phase are shown in figure 3.

For only slightly enhanced values of the anisotropy constant K1 we find no

pinning, but for ∆K1 ≥ 4.0 MJ/m3 the pinning field reaches 1.5 kA/m. In

this regime the pinning field is directly proportional to ∆K1. This linear

behaviour has also been predicted by Kronmüller [18]. In figure 4 the results

for attractive and repulsive pinning are summarized.

The thickness of the intercellular phase also has an important influence

on the pinning mechanism and the pinning fields.

The thickness has been varied from t = 10 nm to t = 40 nm and an

anisotropy constant of Kattr
1 = 1.2 MJ/m3 and Krep

1 = 9 MJ/m3 have been

assumed for the intercellular phase for the cases of attractive and repulsive

pinning, respectively.

For very thin intercellular phases the effect of attractive domain wall pin-

ning is lost, because the domain wall does not “fit into” the precipitation

phase. Thus, the domain wall moves through the magnet without any hin-

drances. As the thickness of the intercellular phase increases, the pinning

field increases (cf. fig. 5). However, for very thick intercellular phases, the

8



pinning field decreases again. Figure 6 shows the reason for this behaviour:

The domain wall bends into the precipitation phase, which leads to high

stray fields at the corners of the cells and facilitates the reversal of magne-

tization in the cells. For a thickness of more than 40 nm of the intercellular

phase, the pinning behaviour is lost again, because the domain wall sweeps

through the whole intercellular phase and reverses its magnetization. As a

result the unreversed cells remain until nucleation starts the reversal of their

magnetization.

In the case of repulsive domain wall pinning, a minimum thickness of the

intercellular phase is required, too. However, in this regime the pinning field

strongly increases for increasing thickness until it reaches a maximum level,

which is shown in figure 5. Once again, the sharp corners of the cells play

an important role, because this is the place, where the domain wall can cross

the intercellular phase (cf. fig. 7). As the thickness of the intercellular phase

increases, the energy barrier becomes wider and this mechanism gets more

and more difficult.

4 Domain Wall Velocity

In permanent magnet applications it is important to hinder the motion of

domain walls and pin them at precipitates or defects to obtain a high co-

ercive field. In magnetic-electronic devices and sensors the nucleation and

propagation of domain walls determines their speed and performance. Thus,

we study the same physical object, a magnetic domain wall, but now we are
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interested in its dynamic behaviour.

We have assumed a Co nanowire of a length of 500 nm with uniaxial

magnetocrystalline anisotropy parallel to the long axis of the wire and an

additional soft magnetic end of 100 nm, which is required to nucleate a

reverse domain and hereby inject the domain wall. The material parameters

are Js = 1.76 T, A = 1.3 × 10−11 J/m and Ku = 4.5 × 105 J/m3 [19]. Our

finite element micromagnetic model has been modified to adaptively refine

the mesh in regions of interest, which was around the domain wall. The

algorithm is described in detail in [8].

The structure of the domain wall and its velocity strongly depend on the

diameter d of the nanowire and the damping constant. For d < 20 nm a

“transverse wall” (fig. 8) [20] is found, because it minimizes the exchange

energy, which is the dominant contribution, at the expense of magnetostatic

energy due to surface charges. With increasing diameter of the wire, the

magnetostatic energy becomes more important. Thus, for d > 20 nm a

“vortex wall” (fig. 8) is observed: In its center a vortex with the symmetry

axis parallel to the axis of the wire is formed, which reduces the magnetic

stray fields and the magnetostatic energy at the expense of exchange energy.

For the critical diameter of d = 20 nm both walls are found. Figure 9 gives

the wall velocities for different wire diameters. The open symbols indicate

transverse walls and the filled symbols indicate vortex walls.

The damping constant α in the Gilbert equation of motion (eq. 2) has

a strong influence on the domain wall velocity, which is markedly different

for the two different types of domain walls. For d = 10 nm only transverse
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domain walls are formed and figure 10 shows its velocity for different damping

constants. With increasing damping constant the velocity increases from

50 m/s for α = 0.05 to 520 m/s for α = 1 at an applied field of 500 kA/m.

For higher damping constants the domain wall velocity increases faster for

higher external fields. In the transverse wall gyromagnetic precession is the

driving force of the motion.

For a wire with d = 40 nm a vortex wall is observed and its velocity for

different damping constants is given in figure 11. The domain wall velocity in-

creases with decreasing damping constant, reaching 2000 m/s for d = 40 nm,

α = 0.05 and an applied field of 250 kA/m. A similar behaviour has been

found with simple analytical models for Bloch-type domain walls [21]. How-

ever, a detailed analysis of the magnetization distribution during the motion

of the domain wall reveals, that the vortex does not remain in the middle of

the wire. Its core moves towards the surface perpendicular to the axis of the

wire. As it vanishes on one side another vortex is formed on the opposite

side due to the strong stray fields. Thus, the motion of the vortex domain

wall consists in a repeated formation and vanishing of vortices. The increase

of the vortex domain wall velocity with decreasing damping constant is ex-

pected in Bloch type walls [22]. Vortex walls achieve higher velocities than

transverse walls due to the more Bloch-like character leading to a higher

mobility of the wall [23].
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5 Conclusions

We have studied the behaviour of magnetic domain walls using numerical

micromagnetic simulations. The pinning effect in precipitation hardened

SmCo magnets showed the influence of intercellular phases on the domain

wall propagation. Depending on the material composition attractive and

repulsive pinning has been observed and the influence of the thickness of the

intercellular phase has been studied. The dynamics of domain wall motion

have been studied in Co nanowires, and again the importance of the thickness

of the wire has been shown. Two different types of domain walls have been

found and their propagation speed has been investigated.

Work supported by the EC COST Action P3, EC project HITEMAG

(GRD1-1999-11125) and the Austrian Science Fund (Y-132 PHY).
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Table and figure captions

Fig. 1: Finite element model of the microstructure of a Sm(Co,Fe,Cu,Zr)z

magnet.

Fig. 2: Demagnetization curves for reduced magnetocrystalline anisotropy

K1 of the cell boundary phase (values in the legend in MJ/m3) - attractive

pinning.

Fig. 3: Demagnetization curves for enhanced magnetocrystalline anisotropy

K1 of the cell boundary phase (values in the legend in MJ/m3) - repulsive

pinning.

Fig. 4: Pinning field vs. difference in anisotropy constant between the cells

and the cell boundary phase.

Fig. 5: Demagnetization curves for varying thickness t (values in the legend

in nm) of the intercellular phase.

Fig. 6: Bending of the domain wall into the intercellular phase (attractive

pinning).

Fig. 7: Depinning of the domain wall on the corners of the rhombohedral

cells (repulsive pinning).

Fig. 8: Magnetization distribution in a transverse wall (cut plane parallel to

the wire axis) and in a vortex wall (cut plane perpendicular to the wire axis

through the vortex core).

Fig. 9: Domain wall velocity as a function of the applied field for different

wire diameters. The open symbols and the filled symbols refer to transverse

and vortex walls, respectively.
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Fig. 10: Domain wall velocity of transverse walls for different damping con-

stants for a wire with d = 10 nm.

Fig. 11: Domain wall velocity of vortex walls for different damping constants

for a wire with d = 40 nm (triangles: α = 0.05; circles: α = 1).
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