Langevin Dynamics of Small Ferromagnetic Particles and Wires
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Abstract

Thermally induced magnetization reversal of small particles is studied using Langevin dynamics. The determin-
istic Gilbert equation of motion transforms to a stochastic partial differential equation adding a random thermal
field to the effective field. The space discretization leads to a system of stochastic differential equations with
multiplicative noise which is interpreted in the sense of Stratonovich and solved using the method of Heun. The
ellipsoids and wires reverse by rotation if the length of the particle is I < 16 nm. In longer wires, a nucleus of reverse
magnetization forms at one end of the particle. The activation volumes associated with the different reversal modes
are calculated from the field dependence of the energy barrier. The calculated activation volume is v = (2.1 nm)®
for Co-wires with / > 20 nm.
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1 Introduction

The basic structural units of magnetic recording media are particles or grains in the nanometer range. Data is stored in
small regions consisting of several grains or particles which have their magnetization oriented in two allowed directions.
With increasing recording density the grain size as well as the number of grains or particles forming a bit becomes
smaller. With decreasing size of the elementary storage volumes, thermally activated magnetization reversal becomes
an important issue in magnetic recording [1]. Thermal activation governs the time dependence of the magnetization.
Therefore, thermal effects are relevant to the high speed switching of the magnetization in the write process and to the
long term thermal stability of the written bit. The irreversible switching of the particle occurs either by the rotation
of the magnetization or by the expansion of a nucleus of reverse magnetization. Both processes are associated with
activation energy and may be described using the Arrhenius-Néel model. At finite temperatures, random magnetic
field fluctuations help to overcome the reversal barrier [2, 3]. The stochastic fluctuation field arises from the interplay
of the lattice vibrations and the magnetization. The probability of irreversible switching is given by the probability
per unit time of crossing the energy barrier

(1) p = foexp(—E/ksT),

where fy is a thermal attempt frequency for barrier crossing, kg denotes the Boltzmann factor, and 7' is the temper-
ature. The reciprocal of the switching probability is the relaxation time

(2) 7= fy ' exp(E/ksT).
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The attempt frequency fy depends on material parameters, like anisotropy, particle shape, and damping [4]. Tts value,
which ranges from fy = 10° Hz to f, = 10'? Hz, sets the time scale for thermally assisted magnetization reversal
To=fy L'~ 1 ns.

The activation energy and the attempt frequency can be estimated for coherent rotation of the magnetization in
single domain particles [3] and the nucleation of reversed domains in thin ferromagnetic wires [4]. The theoretical
treatment of thermally activated magnetization reversal for particles with nonuniform demagnetizing field requires
to solve the Langevin equation numerically. The Langevin equation follows from the Gilbert equation of motion by
adding a random thermal fluctuation field to the effective magnetic field. The deterministic Gilbert equation [5] is
believed to describe the physical path of the magnetization towards equilibrium, taking into account gyromagnetic
precession and damping. In real systems, thermal fluctuations changes the deterministic motion of the magnetization
into a random walk. A theoretical description must treat magnetization reversal as stochastic process. The magnetic
properties like the coercive field and the switching time follow from averages over many numerical realizations of
the reversal process. Garcia-Palacios and Lézaro [6] numerically solved the Langevin equation for a single magnetic
moment. They reported important phenomena, like crossing-back or multiple crossing of the energy barrier which are
attributed to the gyromagnetic nature of the system. Zhang and Fredkin [7] used the finite element method to study
thermally activated reversal in ellipsoidal particles large enough to show an inhomogeneous reversal process.

Time dependent effects in magnetic media may be described in terms of an activation volume [8]. The activation
volume is a parameter to characterize the time dependent and thermal effects and is in general no identifiable physical
entity. For coherent rotation, the activation volume is much smaller than the particle size. For nucleation process,
the activation volume may be associated with the volume of the nucleus of reverse magnetization [9, 10]. This work
estimates energy barriers and activation volumes from numerical results obtained from the simulation of irreversible
switching of ellipsoidal and cylindrical particles. A finite element method is used to discretize the Langevin equa-
tion. The resulting system of stochastic differential equations with multiplicative noise is interpreted in the sense of
Stratonovich [11] and solved using the method of Heun [6]. Section 2 of the paper reviews the micromagnetic and nu-
merical background. Section 3 presents finite element micromagnetic simulations of thermally activated magnetization
reversal in ellipsoidal Co-particles and Co-nanowires.

2 Micromagnetic and numerical background

2.1 Langevin micromagnetics

The Langevin equation [5]

(3) g—i = —|y|J X (Hegt + Hen) + %J X g—‘:

describes the random motion of the magnetic polarization vector J = (Jy, Ja, J3) = puoM at finite temperatures. The
first term on the right hand side of equation (3) accounts for the gyromagnetic precession, the second term arises
from viscous damping. v is the gyromagnetic ratio of the free electron spin v = 2.21 x 10°> m/(As); « is the Gilbert
damping constant. The critical value of & which minimizes the relaxation time was found to a = 1 for athermal [12]
and thermally activated reversal [13]. The effective field, Hey = —0E;/dJ, is the variational derivative of the total
magnetic Gibbs free energy

@) B = /Q

E is the sum of the exchange energy density, the magneto-crystalline anisotropy energy density, the magnetostatic
energy density, and the Zeeman energy density. A is the exchange constant, J; = |J| is spontaneous magnetic
polarization, K is the uniaxial anisotropy constant, and u is the anisotropy direction. Heyy is the external field. The
demagnetizing field Hy follows from the magnetic scalar potential Hy = —VU which which satisfies the following
boundary value problem

int

A 3 2 Ku 2 1
dV{J—szi;(wi) —J—SQ(J-u) —§J-Hd—J-Hext}.

(5) V32U (r) V-J(r)/po forr € Qiy,
(6) V3U(rx) = 0 for r € Qeyy,
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where Q¢ and Qexy denote the space within and outside the magnet, respectively. At the boundary I' the boundary
conditions

(7) Uint — UeXt, (VUint _ VUext) n= (J . n) /NO

hold. Here n denotes the outward pointing normal unit vector on I'. The magnetic scalar potential is regular at
infinity

(8) Uxl/r forr— oco.

In order to treat thermally activated processes a stochastic, thermal field, Hyy, is added to the effective field, Heg -
The thermal field is assumed to be a Gaussian random process with the following statistical properties:

9) (Hgn,i (r,t)) = 0,
(10) (Hpi (v,t) Hy (') = Doyd(x—1')8(t—t).

The average of the thermal field, taken over different realizations, vanishes in each direction 7 in space. The thermal
field is uncorrelated in time and space. The strength of the thermal fluctuations follow from the fluctuation-dissipation
theorem [11]:

2akpT
11 D= :
(11) A

2.2 Space and time discretization

The Cartesian components of the magnetic polarization vector, J, and the magnetic scalar potential, U, are interpolated
with piecewise linear functions on a tetrahedral finite element mesh. A hybrid finite element / boundary element
method [14] is used to solve equations (5)—(8). The effective field at the node k of the irregular finite element mesh
may be approximated using a box scheme:

12 O 1 OE; (..., 301 g0 g+ )
1 0] EAO)

where V) is the volume associated with the node I. The following conditions hold for the box volumes

int

(13) ZV(”:/ dvV and VNV =0 forl#m.
1 2

The Langevin equation (3) reduces to three stochastic differential equations for each node of the finite element mesh,
using the box scheme (12) to approximate the effective field. The resulting system of 3N Langevin type equations
with multiplicative noise reads [6]

97" 0 M (0
(14) ot A+ Z B Hyyy (1),
k
l Y l ajy l
(15) AD = |:_1—|+_—|a2J(l) «HO _ %Ja) x (30 Hgf)f)] ,
2

aly

(16) BY = - ent - % (Jz’mJg) - 5ikJs2) ;
J

where the indices 7, j, k run over the three space directions, and the index | = 1,..., N runs over the number of nodes.

The drift term Agl) is the right hand side of the deterministic Landau-Lifshitz-Gilbert equation. The noise term of

equation (14) is multiplicative, since the factor, Bg,?, for the stochastic process Ht(}?’ « (t) depends on J ). The Heun
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Figure 1: Finite element models of the particles used for the simulation of thermally activated switching.

scheme for equation (14), interpreted in the sense of Stratonovich, reads:

(17) T = JO () + AtAD ( I (o LOJ (I ) +vVDOAY By (J(”) ),
k
(18) O +A) = IO+ 5[40 (.,30-0,30,300, ) £ a® (300,30, 360, )]
7"17‘2”“ zk: [BY (30) + BY (30)] .
(19) DY %

1 . . . .
where n,(c) are independent Gaussian variables of mean 0 and variance 1.

The time step, (7Js/po) At = 1073, was used for the calculations. The mesh size was h < 0.3 lox, Where [y is the

exchange length, lex = \/2uoA/J2.

3 Numerical examples

Thermally activated reversal was simulated for ellipsoidal and cylindrical particles. The intrinsic magnetic properties
of Co (Js =1.76 T, A = 1.3 x 107", K, = 6.8 x 10° J/m?) and a Gilbert damping constant o« = 1 were assumed
for the calculations. The particles have a diameter d = 2 nm and an aspect ratio of 2:1, 4:1, and 16:1, respectively.
Figure 1 shows the surface of the finite element mesh for the different particles.

The extension of the ellipsoid is comparable with the exchange length, lox. Thus it is expected to reverse by
coherent rotation. According to the Stoner-Wohlfarth theory the field dependence of the activation energy, E(H), is
[8]:

o 2
(20) EH) = KV(I——) ,
Hyg
JZ
(21) K = Ku-i-%(NL—N”),
2K
22 H¢y = —.
(22) K T

K is the effective anisotropy constant taking into account the shape of the particle; V' is the particle volume; N and
N are the demagnetizing factors parallel and normal to the symmetry axis. A fit of the calculated relaxation time 7
using equation (2) provides the energy barrier from numerical experiments. Figure 2 shows that In7 versus 1/ (kgT)
forms a straight line in the investigated field and temperature range. The cylindrical particle with an aspect ratio of
4:1 shows a similar behavior.

The formation of a nucleus of reverse magnetization at the end starts the reversal process in the nanowire with
aspect ratio 16:1. Using an analytical model, Braun [15] estimated the energy barrier for the nucleation in a nanowire

/2
(23) E(H) = (8/3)r’nVAK (1 - H£>3 ,

K
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Figure 2: Relaxation time as a function of K'V/ (kgT') for different applied fields.

where r is the radius of the wire. Figure 3 gives the energy barriers, E(H), as a function of the field for the ellipsoid and
the nanowire with the aspect ratio 16:1. For the ellipsoid, the numerical values for the activation energy agree perfectly
with the analytical results given by equation (20). For the nanowire, the energy barriers according to equation (23)
exceed the numerical results by about a factor of 2 to 3. This may be attributed to inhomogeneous magnetic states
across the wire, which are neglected in the analytical model. These magnetic inhomogeneities arise from thermal
fluctuations and the highly nonuniform demagnetizing field near edge at the ends of the wire.

An effective activation volume can be derived under the assumption that the activation energy corresponds to the
energy of the nucleus of reverse magnetization

(24) E(H) = —vJ;H.
Then the activation volume, v, can be derived from the slope of E(H)

(25) v=-—L9E
Js 0J
Figure 3 clearly shows that the activation energy for the wire depends linearly on the applied field within the in-
vestigated field range. This behavior indicates that magnetization reversal occurs by the formation of a nucleus of
reverse magnetization [8]. The analysis of the calculated magnetization configurations as a function of time confirms
a nucleation mechanism. The magnetization starts to reverse within a finite volume at one end of the wire. Once a
reversed domain has formed, it expands over along the entire wire. The calculated activation volume, v = (2.1 nm)3,
was found to be independent of the length of the nanowire. Li and co-worker [10] obtained a similar result from

magnetic measurements on ¢-Fe nanowires.

4 Summary

The Langevin equation describes the random motion of the magnetization towards equilibrium. A finite element
method and the method of Heun are applied to discretize the stochastic partial differential equation in space and in
time. The numerical results obtained for elongated Co-particles show that magnetic nanowires which exceed a critical
length switch via a nucleation mechanism. Magnetization reversal starts at one end and proceeds along the entire
wire. The volume of the initially formed nucleus is independent of the length of the wire.
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Figure 3: Activation energy as a function of the applied field. The open symbols give the numerical values. The dashed

lines give the analytical results according to equation (20) and (23). The dotted line is linear fit of the numerical
values for the nanowire.
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