Micromagnetic Simulation of Domain Wall Pinning in Sm(Co,Fe,Cu,Zr), Magnets

W. Scholz, J. Fidler, T. Schrefl, D. Suess, and T. Matthias

Institut für Angewandte und Technische Physik, Vienna University of Technology

Introduction

Samarium-Cobalt type permanent magnets were discovered in the 1960's by Strnat and coworkers [1]. The high magnetic moment of Sm and Co as well as the high magnetocrystalline anisotropy are the reason for the excellent magnetic properties of this material. Furthermore the high Curie temperature of 720 °C for SmCq, and 820 °C for Sm₂Co₁₇ [2] makes it the best material currently available for high temperature magnets.

0

-0.2

-0.4

-0.6

-0.8

Ń

Micromagnetic Model

Results

Fig. 1: Demagnetization curves for Fig. 2: Demagnetization curves for varying thickness t (values in the legend in nm) of the intercellular phase.

Fig. 5: Demagnetization curves for D=250 nm and t=10 nm.

varying anisotropy constant K_1 of the cell boundary phase (values in the legend in MJ/m³) - attractive pinning.

Fig. 6: $H_{ext} = -1360 \text{ kA/m}$ $J/J_{s} = -0.03$

-4000 -3000 -2000 -1000

H_{ext} (kA/m)

z-values t (nm)

2.5

5

10

20

40

Fig. 7: $H_{ext} = -2040 \text{ kA/m}$ $J/J_{s} = -0.35$

varying anisotropy constant K_1 of the cell boundary phase (values in the cells and the cell boundary phase. legend in MJ/m³) - repulsive pinning.

Fig. 3: Demagnetization curves for Fig. 4: Pinning field vs. difference in

V_{1:5} (nm³)

2358

4843

10202

22570

54643

5000

4000

3000

2000

1000

(kA/m)

н_{рі}

 $V_{2:17}$ (nm³)

28738

28738

28738

28738

28738

5.5

9.0

11.4

7.0

_ _ _ 10.0

> 0 1000

ratio

12.187

5.934

2.817

1 273

0.526

attractive

pinning

-2 0

anisotropy constant between the

repulsive

pinning

2

 $\Delta K_1 (MJ/m^3)$

7

8.13

7.81

7.31

6 64 5.93

Fig. 8: $H_{ext} = -2500 \text{ kA/m}$ $J/J_{s} = -0.53$

Conclusions

In order to improve the magnetic properties of pinning controlled Sm(Co,Fe,Cu,Zr)z magnets the thickness and the composition of the cell boundary phase have to be optimized. Our simulations show, that the thickness of the cell boundary phase plays a crucial role for attractive domain wall pinning, since it must not be too thin, for the domain wall to "fit in" and it must not be thicker than 4 times the domain wall width.

References

- [1] K. J. Strnat and G. Hoffer and J. Oson and W. Ostertag, J. Appl. Phys. 38 (1967) 1001-1002 [2] K. D. Durst and H. Kronmüller and W. Ervens, Phys. Stat. Sol. 108 (1988) 403-416
- [3] T. Matthias, J. Fidler, G. Zehetner, T. Schrefl, D. Schobinger, G. Martinek, J. Magn. Magn. Mater. Submitted JEMS '01 paper no. J-034.
- [4] J. D. Livingston, D. L. Martin, J. Appl. Phys. 48 (1977) 1350-1354.
- [6] E. Estevez-Rams, TEM study of the correlation between microstructure and magnetic properties of novel hard and soft magnetic materials, Dissertation, TU Vienna (1996).
 [6] M. J. Donahue, R. D. McMichael, Physica B 233 (1997) 272-278.

1ST JOINT EUROPEAN MAGNETIC SYMPOSIA, Grenoble 2001