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Abstract

Effects of thermal activation are included in micromagnetic simula-
tions by adding a random thermal field to the effective magnetic field.
As a result, the Landau-Lifshitz equation is converted into a stochastic
differential equation of Langevin type with multiplicative noise. The
Stratonovich interpretation of the stochastic Landau-Lifshitz equation
leads to the correct thermal equilibrium properties. The proper gener-
alization of Taylor expansions to stochastic calculus gives suitable time
integration schemes. For a single rigid magnetic moment the thermal
equilibrium properties are investigated. It is found, that the Heun
scheme is a good compromise between numerical stability and compu-
tational complexity. Small cubic and spherical ferromagnetic particles

are studied.
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1 Introduction

Micromagnetic simulations of permanent magnetic materials reveal the de-
tails of the magnetization distribution and dynamic magnetization reversal
processes. The knowledge of the dynamic behaviour is of great importance for
the design of future magnetic recording media. When the desired magnetiza-
tion switching frequencies reach an order of magnitude, which is comparable
to the intrinsic relaxation time of the media, the switching dynamics have to
be investigated in more detail.

The sections of this paper are organized as follows: In section 2 we extend
the theory to take into account thermal perturbations and find a stochastic
differential equation. In section 3 stochastic calculus is summarized and we
find the quantitative properties of the thermal field. For the numerical so-
lution of our Langevin equation we develop suitable numerical integration
schemes in section 4. Then we study the behaviour of a rigid magnetic mo-
ment in section 5 before we go on to cubic and spherical particles in sections 6

and 7, respectively, which are discretized into smaller computational cells.

2 The stochastic Landau-Lifshitz equation

Thermal activation is introduced in the Landau-Lifshitz equation by a stochas-
tic thermal field Hyy,, which is added to the effective field. It accounts for the
effects of the interaction of the magnetization with the microscopic degrees of
freedom (eg. phonons, conducting electrons, nuclear spins, etc.), which cause
fluctuations of the magnetization. This interaction is also responsible for the

damping, since fluctuations and dissipation are related manifestations of one



and the same interaction of the magnetization with its environment.
Since a large number of microscopic degrees of freedom contribute to this
mechanism, the thermal field is assumed to be a Gaussian random process

with the following statistical properties:
(Hn,i(t)) = 0 (1)

This means, that the average of the thermal field taken over different realiza-
tions vanishes in each direction i € {x,y, z} of space. The second moment,

or variance, is given by
(Huni(t) Hun; (1)) = 2D0;6(t — t) (2)

This equation is a manifestation of the fluctuation-dissipation theorem. It
relates the strength of the thermal fluctuations (the variance 2D of the ther-
mal field) to the dissipation due to the damping of our system [1]. The
Kronecker § expresses the assumption, that the different components of the
thermal field are uncorrelated, whereas the Dirac § expresses, that the auto-
correlation time of the thermal field is much shorter than the response time
of the system (“white noise”).

After adding the thermal field we get the stochastic Landau-Lifshitz equa-

tion
dM ay
—~ = M X (Heg + Hy) — —7M X (M x (Heg + Hw)) ,  (3)
dt M
where
' ‘ Y _ Hogle|
v 1+ o? 7 2Tne ‘

Rearrangement to separate deterministic from stochastic contributions gives

dM , '
T = 4'M x Heg —
dt VAR T

M x (M x Heg)



ay'
M M x H 4
M X (M x Hy,) (4)

S

—Y'M x Hy, —

which reveals, that it is a Langevin type stochastic differential equation with
multiplicative noise.

To keep the notation simple, we rewrite (4) by substituting

A;(M,t) = |[—y'M x Heg — %M X (M x Heg) (5)
and z
Bir(M,t) = —'eijM; — %5ijnMjsnmka
= —YeiuM; - aﬁi(@'m%k — OikOjm ) M My,
= —eiM; — %(MiMk —ouM?) (6)

where we have written M? for M;; = M2. We have used the Einstein sum-
mation convention and we will do so in the following. The outer products
have been rewritten with the totally antisymmetric unit tensor ¢ (Levi-Civita
symbol).

Hence, we can simplify the stochastic Landau-Lifshitz equation (3) and

get
dM;
dt

This is the general form of a system of Langevin equations with multiplicative

noise, because the multiplicative factor B;;(M,t) for the stochastic process

Hip k(1) is a function of M.

3 Stochastic calculus

As we have seen in section 2, the effect of thermal activation can be intro-

duced in the formalism of micromagnetics by adding a random fluctuation
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field to the effective magnetic field. A trajectory of the magnetization can
be obtained by integrating the equation of motion. However, in addition to
the well known deterministic terms we also have a stochastic contribution.

It is assumed that the thermal activation is caused by perturbations of
very high frequency. “Very high” means in this case that the frequency is well
above the typical precession frequency of the magnetization vector. Thus, the
fluctuating field, which is used to simulate the effect of thermal activation, is
represented by a stochastic process. It is assumed to be Gaussian white noise,
because the fluctuations emerge from the interaction of the magnetization
with a large number of independent microscopic degrees of freedom with
equivalent stochastic properties (eg. phonons, conducting electrons, nuclear
spins, etc.) [2]. As a result of the central limit theorem, the fluctuation field
is Gaussian distributed.

Let us assume a one dimensional stochastic differential equation with

multiplicative noise [3]

%(t) = a(X(1),8) + b(X (), D) n(t) . (8)

The increment dX during a short time interval dt is given by
t+ dt t+dt
dX (1) = / a(X (#), 1) dt" + / X (1), ¢)n(t') dt’
t t

The second term, which is a stochastic integral, has to be investigated in
more detail. We can evaluate the integrand at the beginning of the interval
[t,t + dt], multiply it by the length of the interval and use the result as the

increment for small dt. Thus, we obtain

dX(t) = a(X(t),t) dt +b(X(t),t)n(t)Vdt



where 7(t) is a standard Gaussian random variable at each discrete time step
with
(n(t)n(¥)) = o(t, 1)
However, we could also evaluate the integrand b at any other time ¢’ in
the interval [t,¢ + dt] and at
X(t) = Q-a)Xt)+aX(t+ dt) =
= (1-a)X(t)+a(X@t)+ dX(1)) =
= X(t)+adX(t) 9)
In this general case we get for the increment dX(¢) an implicit expression
dX(t) = a(X(t),¢') dt +b(X(®) + adX(t),¢')n(t)Vat
With the abbreviation &' = 0b(X,t)/0X we get
(X (1) + adX(t),t)nt)Vdt = b(X (1), )n(t)\/_+
o' (X (t), ') dX (t) n(t)Vt + - - -
= b(X( ),t)mt)f +
ot (X(0), £)b(X (1), )P (01 +
O(dt*'?) (10)

Finally, we get for the increment dX (%)
dX(t) = [a(X(@®),t)+ b (X(1),£)b(X (), t)n*(1)] dt +
b(X (1), t)n(t)Vt. (12)

In this equation we find an additional drift term, which contains o and 7% (¢).

The latter can be replaced by 1 for terms up to the order of dt. Depending
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on the choice of @ and the interpretation of the integral, we get different drift
terms.

If we set a = 0, we get
dX (t) = a(X(t),t)dt +b(X (1), t)n(t)Vdt (13)
and we call it the It interpretation of the stochastic differential equation
X(t) = a(X(t),t) + b(X (), t)n(t) . (14)
For o = 1/2, we get

dX(t) = a(X(t),t)+%b’(X(t),t)b(X(t),t) dt +

b(X (1), t)n(t)Vdt (15)
and we call it the Stratonovich interpretation, which is indicated by writing
X(t) = a(X (), 1) + b(X(t),t) o n(t) . (16)

Thus, we have to distinguish between the interpretation of a stochastic
differential equation and the version, in which it is written. The stochastic

differential equation (16) can be written in an It6 version using (15) as
X(t) =a(X(t),t) + %b(X(t), HY' (X (2),t) + b(X (1), t)n(t) (17)
where we find the noise induced drift term
SHX(0, DH(X(0),1) (18)
Reversely, (14) can be written in a Stratonovich version as

X(t) = a(X(t),t)—%b(X(t),t)b’(X(t),t)+b(X(t),t)on(t)
= a(X(t),t) +b(X(t),t)on(t) . (19)

8



Due to the different drift terms, the two interpretations yield different
dynamical properties [3]. It6 calculus is commonly chosen on certain math-
ematical grounds, since rather general results of probability theory can then
be employed. On the other hand, white noise is usually an idealization of
physical (coloured) noise with short autocorrelation time, in which case the

two time covariance function is given by

()t + 1)) = %e—mﬂ

with a short time constant m~".

The Wong-Zakai-Theorem [4] then says, that in the formal zero-correlation-
time limit
o—=om , m— o0
the coloured noise becomes white noise and we obtain the Stratonovich-
Interpretation for the stochastic differential equation. The results coincide
with those obtained in the limit of fluctuations with finite autocorrelation
time. Therefore, Stratonovich calculus is usually preferred in physical appli-

cations.

4 Stochastic time integration

The mere translation of a numerical scheme valid for deterministic differential
equations does not necessarily yield a proper scheme in the stochastic case.
Depending on the selected deterministic scheme its unconditional translation
might converge to an Itd solution, to a Stratonovich solution, or to none of

them. Even if the scheme converges in the context of stochastic calculus, the



order of convergence is usually lower than that of the deterministic scheme.
This has to be considered, when deciding for the discretization time step.
The stochastic Landau-Lifshitz equation (7) may be effectively solved us-
ing the Heun method. The improved Euler or Heun method [2] is an example
of a predictor-corrector method. The predictor is given by a simple Euler

type integration. If we consider the Langevin equation (7), the predictor is

At is the discretization time step and
t+AL
AW, = / Huo(?) d’
¢
are Gaussian random numbers, whose first two moments are given by

2D is the variance of the stochastic thermal field (2).

The Heun scheme is then given by

% [Bi(NL, ¢+ At) + By (M, )] AW, . (21)

The stochastic Heun scheme converges in quadratic mean to the solution
of the general system of Langevin equations (7) when interpreted in the sense
of Stratonovich.

To conclude, there are two main reasons for the choice of the Heun
scheme for the numerical integration of the stochastic Landau-Lifshitz equa-

tion: First, the Heun scheme yields Stratonovich solutions of the stochastic
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differential equations without alterations to the deterministic drift term. Sec-
ondly, the deterministic part of the differential equations is integrated with
a second order accuracy in At, which renders the Heun scheme numerically
more stable than Euler type schemes.

The stochastic Landau-Lifshitz equation is discretized either with a finite

difference or a finite element method depending on the particle geometry.

5 Rigid magnetic moment

The time step dependence of the numerical integration schemes has been
investigated by simulating a single rigid magnetic moment. The material

parameters were chosen as M, = 1281197 %, Ky =69x10% 2, o= 0.1,

m3’

and V = 1 nm3. The effective field, which is just the anisotropy field, is then

given by
2K kA
H,i= L —8571 =
,u'OMs m

For the time for one full precession of the magnetization vector we obtain

.f W f}/Hani

=332ps ,

where w = ~yH is the Larmor frequency. The average magnetization in

thermal equilibrium according to

fol exp(xz?)zdz _

Jo exp(x2?)dz

5 [exp(x) — 1]
YTerf(1)

<Mz> =

where erf(z) denotes the error function and

KV
X = %aT
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is given in table 1. Equation 22 follows from the probability density of the
magnetization angle for a single-domain Stoner-Wohlfarth particle [2].

Fig. 1 compares the time step dependence of the average magnetization
obtained with the Heun method and the Milshtein scheme. The Milshtein
scheme [5] is the generalization of the deterministic Euler method taking into
account the multiplicative noise term in Stratonovich interpretation. With
the Milshtein scheme we find the correct values for time steps smaller than
0.01 ps, which is about 1/300 of the precession time. The Heun scheme is
suitable for time steps, which are ten times larger, because it has a higher
order of convergence. As a rule, the discretization time step should be at most

1/30th of the precession time of the magnetization vector in the effective field.

6 Cubic particles

Cubes are easy to handle with finite difference packages, because they have
no curved boundaries. The results are compared with those of Nakatani
et al. [6], whose material parameters have been used. They are chosen as
My = 0.4 x 108 % and K; =2 x 10° #, A=1x10"" % In all simulations
the number of switching events was counted for at least 100 ns up to 1 us
and the results extrapolated to 1 us.

Figures 2 and 3 show the time dependence of the magnetization for a
cubic particle of 32 nm edge length at 300 K. The magnetization fluctuates
in the energy minimum around +1. From time to time reversal processes
occur when the magnetization crosses the energy barrier and switches to the

other energy minimum. The probability per unit time, that M, jumps over

12



the energy barrier E in thermal equilibrium, is proportional to

e (7
ol E
P\ kpT

We consider a single energy barrier model and take only anisotropy into
account. The reciprocal of the switching probability is the relaxation time 7

which can thus be written in the form of the Arrhenius-Néel law [7]

K1V> ’ (23)

P (7
where f; is the characteristic dynamic frequency. The original estimation of
Néel was fy ~ 10° s7!, but recently it has become more customary to take
fo~ 101 s tupto fo ~ 102 s 1. Fig. 4 gives the number of switching events
as a function of the particle size calculated for different damping constants
.

If we fit the data of the smallest time step in the linear region of figure 4
(a = 1) with the Arrhenius-Néel law, we find a characteristic dynamic fre-

quency of fo = 3.5 x 10!, The exponent is —4.7 x 10% -V and it is in good

agreement with the value

Ky 25 3
— = —4. 1
T 8 x 10 /m

which we would expect for a single (anisotropy) energy barrier.
Brown [8] has derived an analytic expression for the high-energy-barrier

approximation of the attempt frequency (here for SI units)

3
o= o PR (- ) gy e

For the material parameters given above we find with

2K,

Mo Mg

v =1.7588 x 10" 1/Ts, Hy = =795 kA/m
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at zero external field H = 0 an attempt frequency of 1.97 x 10'2. This result
differs by a factor of 4 from the numerically found value given above. The
reason being that the cubic particle has internal degrees of freedom and the

energy barriers might not be high enough for the approximation to be valid.

7 Spherical particles

The mechanism of thermally activated magnetization switching in small
spherical ferromagnetic particles has been investigated using the finite el-
ement method. The material parameters have been chosen as M; = 0.4 %
106 2, 4 =364 x 102 L o =1, and a radius R = 11.5 nm, which
gives a volume of 6.37 x 1072* m?. The finite element mesh consists of 115
nodes and 440 elements. The mean diameter of the finite elements is 3 nm.
This discretization is sufficient, if we assume a rather low magnetocrystalline

anisotropy. For K; = 2 x 10° -5 we find a typical domain wall width of

m3

[ A
d=m Ex57nm

The initial magnetization is homogeneous and parallel to the easy axis
of the particle. Its magnetization distribution is destabilized by an external
magnetic field, which is parallel to the easy axis but antiparallel to the initial
magnetization. Since this is a metastable state, we can expect the particle to
overcome the energy barrier, which is called the activation energy, and reverse
its magnetization after some time. In contrast to Monte Carlo simulations
[9, 10], we obtain not only information about the dynamical behaviour, but
also about the switching times. The metastable lifetime (or relaxation time) 7

is defined as the time, which passes from the initially saturated state M, () =
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M until M, (1) =0.

In order to measure the metastable lifetime a large number of simulations
has been performed for each set of parameters. After 200 measurements
a waiting time histogram was obtained. The integral of this histogram is
proportional to the switching probability P(t), that is the probability, that
the particle has switched after a certain time. However, it is more common to
draw graphs for the (rescaled) probability of not switching (fig. 5) Paot(t) =
1 — P(t).

The magnetization reversal process can happen in different reversal modes.
In a particle with low anisotropy (or at low external fields) the magnetization
rotates coherently, which means, that the magnetization remains almost ho-
mogeneous during the reversal process except for small thermal fluctuations.
If the anisotropy (or the external field) is increased, it becomes favourable to
form a nucleus of reverse magnetization. Thus, a droplet nucleates near the
surface and expands until the magnetization is completely reversed.

The external field has been chosen to be comparable to the anisotropy

field
2K,
/'I/OMS

Hani -

Figure 6 shows, how the metastable lifetime decreases, when the external
field is increased (the solid line is only a guide to the eye). K; =2 x 105 Z;
and pgHexs = poHani = 1 T have been used at a temperature of 500 K.

Two different regimes, characterized by different magnetization reversal
processes can be identified. For external fields lower than the anisotropy field
(|[H| < H,n;) magnetization reversal by coherent rotation is found. For high

external fields (|H| > H,,;) the reversal process is driven by the expansion
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of a nucleus of reverse magnetization.

Since the external field is higher than the anisotropy field, there is no
energy barrier any more. The system approaches the global energy minimum
in a random walk. This happens by the nucleation and expansion of a reverse

domain (fig. 7).

& Conclusions

The Langevin dynamics approach proved to be a suitable method to model

the effects of thermal activation in magnetic materials.

e Simulations of a single rigid magnetic moment showed, that the Heun
scheme is a suitable time integration method, which allows a time
step size one order of magnitude larger than that for the Milshtein
scheme. Moreover the stochastic Landau-Lifshitz equation of motion
in Stratonovich interpretation leads to the correct thermal equilibrium

properties.

e The magnetization switching behaviour found for a small cubic parti-
cle is identical for the finite difference and finite element model, even
though their method of calculating the effective field is substantially
different. The finite element method is better suited for the simula-
tion of particles with curved or very complex surfaces and allows the

modeling of polycrystalline grain structures.

e For a small cubic ferromagnetic particle magnetization reversal by co-

herent rotation has been found. As a result, its switching dynamics
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is well described by the Arrhenius-Néel law for reversal over a single

energy barrier.

Complex magnetization reversal mechanisms have been found for small
spherical magnetic particles. The magnetocrystalline anisotropy and
the strength of the external field determine the switching mechanism
and two different regimes have been identified. For fields, which are
smaller than the anisotropy field, magnetization by coherent rotation
has been observed. If the external field is significantly higher than the

anisotropy field nucleation is the driving reversal process.
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Table and figure captions

Table 1: Average component of the magnetization parallel to the magneto-
crystalline anisotropy axis for different temperatures calculated for a single
spin.

Fig. 1: Time step dependence of numerical integration schemes.

Fig. 2: Magnetization reversal of a cubic particle for o = 1.

Fig. 3: Magnetization reversal of a cubic particle for o = 0.1.

Fig. 4: Dependence on damping constant for different particle sizes.
Fig. 5: Probability of not switching for different time step sizes.

Fig. 6: Dependence of the metastable lifetime on the external field.
Fig. 7: Nucleation of a reverse domain at an external field of —1.5 T.
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Temperature | (M,)/M;
10 K | 0.98979
50 K | 0.94268
200 K | 0.71976
Table 1:
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(a) Nucleation (b) Expansion

easy
axis

H ext

(c) Droplets join each other

Figure 7:



