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Abstract. The development of advanced magnetic materials such as magnetic sen-
sors, recording heads, and magneto-mechanic devices requires a precise understand-
ing of the magnetic behavior. As the size of the magnetic components approach the
nanometer regime, detailed predictions of the magnetic properties becomes possible
using micromagnetic simulations. Micromagnetics combines Maxwell’s equations for
the magnetic field with an equation of motion describing the time evolution of the
magnetization. The local arrangement of the magnetic moments follows from the
complex interaction between intrinsic magnetic properties such as the magnetocrys-
talline anisotropy and the physical/chemical microstructure of the material. This
paper reviews the basic numerical methods used in finite element micromagnetic
simulations and presents numerical examples in the field of soft magnetic sensor
elements, polycrystalline thin film elements, and magnetic nanowires.

1 Introduction

Micromagnetism is a continuum theory to describe magnetization processes
on a significant length scale which is large enough to replace atomistic mag-
netic moments by a continuous function of position and small enough to
reveal the transitions between magnetic domains [1]. With the rapid increase
in computer power, numerical micromagnetics has become an important tool
to characterize magnetic materials as used in high density magnetic record-
ing and magneto-electronics [2]. The development of ultrahigh density storage
media [3] and magneto-electronic devices [4] requires a precise understand-
ing of the magnetization reversal process. The numerical integration of the
equation of motions which describe the dynamic response of a magnetic sys-
tem under the influence of an external field provides a detailed understand-
ing of the microscopic processes that determine the macroscopic magnetic
properties like switching time and switching field. In addition to external
parameters like the applied magnetic field and the temperature, the magne-
tization reversal process significantly depends on the interplay between the
physical/chemical microstructure of a magnet and the local arrangement of
the magnetic moments.

The finite element method is a highly flexible tool to describe magnetiza-
tion processes, since it is possible to incorporate the physical grain structure
and to adjust the finite element mesh according to the local magnetization.
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An efficient a posteriori error indicator can be defined making use of a conser-
vation law inherent to the physics of the problem. In order to treat the mag-
netostatic interactions of distinct magnetic parts, the finite element method
can be combined with a boundary element method. The space discretiza-
tion of the partial differential equations which describe the magnetization
dynamics leads to a stiff system of ordinary differential equations. Precondi-
tioned backward differentiation methods significantly reduce the CPU time
as compared to Adams or Runge-Kutta methods for time integration.

The paper is organized as follows. Section 2 introduces the basic set of
partial differential equations that describes the time evolution of a magnetic
system. Section 3 presents basic numerical techniques used in the simulation
of magnetic microstructures. Section 3.1 presents the hybrid finite element
/ boundary element methods for the calculation of the magnetostatic field.
Section 3.2 deals with the time integration of the equation of motion, and
section 3.3 briefly discusses an adaptive refinement scheme. Section 4 presents
some recent examples of micromagnetic simulations. Section 4a presents mag-
netostatically driven reversal processes in magnetic nano-dots. Section 4b
shows the influence of surface roughness on the magnetization reversal of
magnetic nano-elements. Section 4c treats the motion of domains walls in
magnetic nano-wires using adaptive mesh refinement.

2 Micromagnetics

2.1 Basic principles of micromagnetism

The basic concept of micromagnetism is to replace the atomic magnetic mo-
ments by a continuous function of position. In a continuum theory the local
direction of the magnetic moments may be described by the magnetic polar-
ization vector

J(r) = µ0M(r) = µ0m/V. (1)

The magnetic polarization J is proportional to the magnetization, which is
given by the magnetic moment, m, per unit volume, V . µ0 is the magnetic
permeability of vacuum. The second principle of micromagnetism treats the
magnitude of the magnetization as a function of temperature only. The mod-
ulus of J ,

|J | = Js(T ), (2)

is assumed to be a function of temperature and to be independent of the
local magnetic field. Thus the magnetic state of the system can be uniquely
described by the directions cosines bi(r) of the magnetic polarization, J =
bJs. In a metastable equilibrium state, b(r) minimizes the the total Gibbs
free energy energy of the system.
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2.2 Total magnetic Gibbs free energy

The contributions to the total magnetic Gibbs free energy are derived from
classical electrodynamics, condensed matter physics, and quantum mechanics
so that the continuous expressions for the energy describe the interactions of
the spins with the external field, the crystal lattice, and the interactions of the
spins with one another. The latter consists of long-range magnetostatic in-
teractions and short-range quantum-mechanical exchange interactions. The
competitive effects of the micromagnetic energy contributions upon mini-
mization determine the equilibrium distribution of the magnetization. The
minimization of the ferromagnetic exchange energy aligns the magnetic mo-
ments parallel to each other, whereas the minimization of the magnetostatic
energy favors the existence of magnetic domains. The magnetocrystalline
anisotropy energy describes the interaction of the magnetization with the
crystal lattice. Its minimization orients the magnetization preferably along
certain crystallographic directions. The minimization of the Zeeman energy
of the magnetization in an external field rotates the magnetization parallel
to the applied field.

The total magnetic Gibbs free energy, Et may be written in the following
form [5]

Et =
∫

Ωint

{
−1

2
Hd · J + A

3∑

i=1

(∇bi)2 + fk(b)−Happ · J
}

d3r. (3)

In (3) the first term of the integrand is the magnetostatic energy density,
the second term is the exchange energy density, the third term denotes the
magnetocrystalline anisotropy density, and the last term is the Zeeman en-
ergy. The integral extends over the total volume of all magnetic particles,
Ωint. Hd, A, and Happ denote the demagnetizing field, the exchange con-
stant, and the applied magnetic field, respectively. For uniaxial materials the
magnetocrystalline anisotropy density may be written as

fk = −Ku(u · b)2, (4)

where Ku is the anisotropy constant and u is the unit vector along the easy
axis. The intrinsic magnetic properties A, Ku, and Js and the spatial distribu-
tion of the easy axes can be determined experimentally. In a polycrystalline
material the direction of the easy axis changes from grain to grain. In addi-
tion, the intrinsic magnetic properties may be space dependent.

The demagnetizing field follows from a magnetic scalar potential, U ,

Hd = −∇U. (5)

The scalar potential solves the Poisson equation

4U(r) =
∇J(r)

µ0
for r ∈ Ωint (6)
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within Ωint, the space occupied by the magnetic particles. Outside the mag-
netic particles, Ωext, (6) reduces to the Laplace equation

4U(r) = 0 for r ∈ Ωext. (7)

At the boundary of the magnet Γ the boundary conditions

U int = U ext,
(∇U int −∇U ext

) · n =
J · n
µ0

, (8)

hold. Here n denotes the outward pointing normal unit vector on Γ . The
magnetic scalar potential is regular at infinity

U ∝ 1/r for r →∞. (9)

The minimization of (3) subjects to the constraints |J | = Js, and (6)
to (9) provides a metastable equilibrium state of the magnetic system. The
subsequent minimization of (3) for different applied field gives the hysteresis
curve. Within this static approach, hysteresis is the way the system follows
its path through the local minima of the energy landscape [6].

2.3 The Landau-Lifshitz-Gilbert equation

The coercive field of a magnetic is a dynamic property. The measured coer-
civity significantly depends on the rate of change of the external field. Several
experiments show an enhancement of the coercive field with decreasing pulse
width of the external field [7]. The dynamic coercivity becomes important
in ultra-high density and high data rate magnetic storage [8]. In addition to
thermal effects, the gyromagnetic precession causes the increase of the coer-
cive field at short times [9]. The precessional motion of a magnetic moment
in the absence of damping is described by the torque equation. According to
quantum theory the angular momentum associated with a magnetic moment
m is

L = m/γ, (10)

where γ is the gyromagnetic ratio. The torque on the magnetic moment, m,
exerted by an effective magnetic field, Heff ,

T = m×Heff . (11)

The change of the angular momentum with time equals the torque,

∂

∂t

(
m

γ

)
= m×Heff , (12)

which describes the precession of the magnetic moment around the effective
field. In equilibrium the change of the angular momentum with time is zero
and thus the torque is zero. In order to describe the motion of the magnetic
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moment towards equilibrium a viscous damping term can be included. A
dissipative term proportional to the generalized velocity, (∂m/∂t), is added
to the effective field. With η being a positive constant, the dissipative term
−η(∂m/∂t) slows down the motion of the magnetic moment and aligns m
parallel to Heff . This gives the Gilbert equation of motion [10]

∂m

∂t
= −|γ|m×

(
Heff − η

∂m

∂t

)
. (13)

Within the framework of a continuum theory (13) has to hold in every point
within a ferromagnetic material. Thus we can replace the magnetic moment,
m, with the magnetic polarization vector, J , and write the equation of motion
in continuous form

∂J

∂t
= −|γ|J ×Heff +

α

Js
J × ∂J

∂t
. (14)

In (14) the dimensionless Gilbert damping constant α = γηJs was introduced.
Multiplying (14) with J · shows that the equation of motion conserves the
norm of the magnetic polarization vector, since the right hand side vanishes:
∂ (J · J) /∂t = ∂J2

s /∂t = 0. Multiplying both sides of (14) with J× gives

J × ∂J

∂t
= −|γ|J × (J ×Heff) +

α

Js
J ×

(
J × ∂J

∂t

)
. (15)

Using the a× (b× c) = (a · c)b− (a · b)c, we can rewrite (15)

J × ∂J

∂t
= −|γ|J × (J ×Heff) +

α

Js

(
J · ∂J

∂t

)
J − α

Js
(J · J)

∂J

∂t
,

J × ∂J

∂t
= −|γ|J × (J ×Heff)− α

∂J

∂t
. (16)

If we substitute this result into (14), we obtain the Landau-Lifshitz-Gilbert
equation

∂J

∂t
= − |γ|

1 + α2
J ×Heff − |γ|α

(1 + α2)Js
J × (J ×Heff) . (17)

The effective field,

Heff = −δEt

δJ
, (18)

is the negative variational derivative of the total magnetic Gibbs free energy.
Each energy term contributes to the effective field. The different contributions
to the effective field are the demagnetzing field, Hd, the exchange field, Hex

the anisotropy field, HK, and the applied field, Happ. Whereas the anisotropy
field depends only locally on the magnetic polarization, the exchange field and
the demagnetizing field account for interactions. The exchange interactions
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are short range. The magnetostatic interactions are long range, since the
magnetic potential U depends on the magnetic volume charges, ∇·J/µ0, and
magnetic surface charges, J ·n/µ0, over all magnetic particles. The variation
of the exchange energy gives the exchange field

Hex =
2A

Js
4b. (19)

The LLG equation (17) is a partial differential equation which is coupled to
the magnetostatic boundary value problem (6) to (9).

3 Numerical methods

3.1 Magnetostatics

A key part in micromagnetic simulations is the calculation of the magnetic
field which arises from the interaction of the magnetization with the element
geometry. This so-called demagnetizing field is crucial for the formation of
the magnetic domain structure in large elements and determines the external
field required to reverse the magnetization of small elements. The magneto-
static interactions between distinct magnetic elements become important in
magnetic multilayers or arrays of magnetic dots used for sensor applications,
and magnetic storage.

The partial differential equations for the magnetic scalar potential (6) to
(9) define an open boundary problem. The potential or its normal derivative
are only know at infinity. In principle one has to mesh a wide region out-
side the magnetic particles in order to account for the boundary conditions
at infinity (9). In order to overcome these problems various techniques to
treat open boundaries in finite element simulations have been proposed [11].
A hybrid finite element/boundary element method originally introduced by
Fredkin and Koehler [12] is very suitable for micromagnetic simulations, as it
treats the magnetostatic interactions between distinct magnetic parts with-
out the need to mesh the space outside the magnetic bodies. This feature
becomes important simulating the magnetostatic interactions between sen-
sors elements or the writing process in magnetic recording.

The basic concept of this approach is to split the calculations into to
parts using the superposition principle. First a potential, U1, which arises
from the magnetic charges within the individual magnetic bodies is calcu-
lated. In a second step, a potential, U2, which accounts for the magnetostatic
interactions between distinct bodies and the boundary conditions at infinity,
is calculated. The potential U1 is assumed to solve a closed boundary value
problem. Then the equations for U2 can be derived from (6)–(9), which hold
for the total potential U = U1 + U2. The potential U1 can be computed from
the closed boundary value problem,

4U1(r) =
∇ · J(r)

µ0
for r ∈ Ωint (20)
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U1 = 0 for r ∈ Ωext (21)

∇U1 · n =
J · n
µ0

for r ∈ Γ. (22)

The potential U1 is the solution of the Poisson equation within the mag-
netic particles and equals zero outside the magnets. At the surface of the
magnets natural boundary conditions hold. The potential U2 satisfies the
Laplace equation everywhere

4U(r) = 0 for r ∈ Ωint ∪Ωext, (23)

with the following boundary conditions for r ∈ Γ

U int
2 − U ext

2 = U1, (24)(∇U int
2 −∇U ext

2

) · n = 0. (25)

The potential U2 shows a jump at the surfaces of the magnetic bodies.
The closed boundary value problem (20)–(22) can be solved using a stan-

dard finite element method. Both the potential U1 and the direction cosines of
the magnetic polarization, bi, are interpolated by piecewise linear functions on
a tetrahedral finite element grid. The resulting linear equation is solved using
a conjugate gradient method with relaxed incomplete factorization (RILU)
preconditioning [13]. During time integration of the LLG equation, the iter-
ative solver can be started with the previous solution for U1 as initial guess.
Typically about 25 iterations are required in a system with 2 × 104 nodes.
The equations (23)–(25) define a double layer potential

U2(r) =
1
4π

∫

Γ

U1(r′)∇′ 1
|r − r′| · n

′dr′2 (26)

which is created by a dipole sheet with magnitude U1. In principle U2 can
be evaluated everywhere within the magnetic bodies using (26). However,
instead of the direct computation of U2 discretizing (26), we evaluate U2 at
the boundary and then we solve (23) within Ωint using the known boundary
values as Dirichlet conditions. To compute U2 on Γ , we have to take the limit
r → Γ of the surface integral from inside Ωint

U2(r) =
1
4π

∫

Γ

U1(r′)∇′ 1
|r − r′| · n

′dr′2 +
(

Ω(r)
4π

− 1
)

U1(r). (27)

We discretize (27) using piecewise linear functions to interpolate U1 on a
triangular surface mesh. U2 follows from a matrix vector product U2 = BU1.
The boundary element matrix, B, depends only on the geometry of the prob-
lem and has to be computed only once. B is a fully populated m×m matrix
which relates the m boundary nodes with each other.

In summary we have to perform the following procedure to compute the
demagnetizing field. Prior to the time integration of the LLG equation we
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assemble the system matrices and compute an incomplete ILU factorization
of the linear systems corresponding to equations (20) and (23). The setup
phase also involves the computation of the boundary matrix B. Generally we
are interested on the dynamic response of a system over a time span which
is about two orders of magnitude larger than intrinsic precession time. Thus
the CPU time of the setup phase is only a small fraction of the total CPU
time. At each iteration during the time integration we have to perform the
following steps to update the magnetostatic field:

1. Iterative solution of a linear system for U1 (equation 20).
2. Matrix vector product to obtain U2 at the boundary of the magnetic

bodies (equation 27).
3. Iterative solution of a linear sytem for U2 within the magnetic bodies

(equation 23).
4. Sum U1 and U2 and build the gradient (equation 5).

3.2 Time integration

The precise understanding of the switching process of thin film nanomagnets
is important for sensor and spin electronic applications. Surface irregularities
and grain structure drastically change the reversal mechanism of thin film
elements [14]. Taking into account surface roughness and grain structures re-
quires an inhomogeneous computational grid which in turn causes very small
time steps for time integration. Toussaint and co-workers [15] showed that
the time step required to obtain a stable solution of the LLG equation with
an explicit time integration scheme has to be proportional to 1/h2, where h is
the size of the spatial grid. Edge roughness and an irregular grain structure
may force small finite elements which leads to a small time step when an
explicit time integration method is applied to solve the LLG equation. Yang
and Fredkin [16] originally applied a BDF method in dynamic micromagnetic
simulations. They apply the Galerkin variant of the finite element method for
space discretization and a generalized minimum residual method (GMRES)
to solve the linear systems involved in the solution process.

We use a collocation method to integrate the LLG equation (17) and
assume that the equation is fulfilled at the nodes of the finite element mesh.
Using spatial averaging we assign a magnetic moment

mi =
1
µ0

∫

Vi

J(r)d3r (28)

to node i of the finite element mesh. The box volumes Vi have the following
properties

N∑

i=1

Vi =
∫

Ωint

d3r, (29)

Vi ∩ Vi = 0 for i 6= j, (30)
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where the sum in (29) runs from 1 to the total number of nodes of the finite
element mesh, N . The effective field at node i can be approximated as

Hi
eff = − 1

µ0

∂Et

∂mi
. (31)

Again a piecewise linear interpolation of the magnetic polarization vector
on a tetrahedral finite element mesh is used to discretize the total magnetic
Gibbs free energy, Et.

Using (28) and (31) we can define a magnetic moment vector and an ef-
fective field vector at each node of the finite element mesh which leads to a
system of 3N ordinary differential equations. It is solved using a BDF method
[17]. Within the framework of this software package, the linear system at each
Newton iteration is solved using a GMRES method. The GMRES method is a
matrix free iterative method to solve a linear system of equations. Within the
time integration package, the product of the Jacobian matrix times a vector
is approximated using finite differences. Preconditioning partly replaces the
finite difference approximation with exact curvature information. We provide
the parts of the Jacobian matrix which are associated with the magnetocrys-
talline anisotropy and the ferromagnetic exchange interactions. As the short
range interactions are the major source of stiffness in micromagnetic simu-
lations, we obtain a significant speed up while keeping the system matrix
sparse. A nonlinear system of equations has to be solved at each time step
which can be effectively solved using the Newton method. Typically only 1–2
Newton steps are required to obtain convergence. However, the linear system
to be solved at each Newton step may be ill-conditioned so that most of the
total CPU time is spent in solving this system. A twofold procedure helps to
speed up the calculation by more a factor of 40.

1. We provide an approximate Jacobian containing the short range inter-
actions. This information is used to apply a left preconditioner to the
internal matrix free GMRES solver of the time integration software.

2. The auxiliary linear equation which has to be solved for preconditioning
of the internal GMRES solver is solved iteratively using a biconjugate
gradient stabilized (BICSTAB) algorithm [18]. Among various precondi-
tioners the imcomplete factorization (ILU) preconditioning proved to be
most efficent for this auxiliary systems of linear equations.

3.3 Adaptive meshing

The numerical treatment of magnetization processes involves a wide range of
length scale. A sufficiently fine finite element mesh is required to accurately
predict the switching field of magnetic particles. Numerical experiments by
Rave and co-workers [20] showed that the accurate simulation of the nucle-
ation of reversed domains requires a mesh size comparable with the charac-
teristic length of the material. As the mesh size reaches the critical length the
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exchange energy density and the magnetostatic energy density balance each
other and the nucleation field becomes independent of the grid spacing. The
critical length scale depends on the relative strength of the exchange energy
density with respect to the other micromagnetic energy terms. In soft mag-
netic materials the most dominant energy contribution is the magnetostatic
energy. The significant length is given by the exchange length

lex =

√
2µ0A

J2
s

. (32)

In hard magnetic materials the most dominant energy contribution is the
magneto-crystalline anisotropy energy. The significant length is given by the
Bloch parameter

δ0 =
√

A

Ku
. (33)

The typical length scales involved are the following:

• The typical sample size is in the range of micrometer range. Examples
are the length of magnetic-nanowires or the lateral extension of magnetic
thin film elements as used for sensor or storage elements [4].

• Most magnetic materials exhibit a polycrystalline structure. The grain
size of magnetic thin film elements is in order of 10 nm [19].

• The characterstic length is an intrinsic property an is typically in the
range from 3 nm – 5 nm. It is the length scale on which the magnetic
polarization vector changes its direction [20].

Adaptive refinement and coarsening schemes are applied in order to scope
with these different length scale in micromagnetic simulations. Hertel and
Kronmüller [21] introduced an adaptive refinement scheme in static micro-
magnetic simulations, to calculate domain configurations in thin film ele-
ments. Here present a scheme to refine and coarse the mesh during the time
integration of the LLG equation.

The general outline of adaptive algorithms is as follows. Starting from an
initial triangulation τ0, we produce a sequence of refined grids τk, until the
estimated error is below a given tolerance ε. The nature of the micromagnetic
problem allows to define a cheap a posteriori error indicator. Using piecewise
linear function to represent the direction cosines of the magnetic polarization,
the constraint (2) can only be hold at the nodal points of the finite element
mesh. Thus an error indicator for the element e may be constructed by

ηe =
∫

Ωe

∣∣∣∣
J · J
J2

s

− 1
∣∣∣∣ d3r/Ve. (34)

The mesh is adjusted to the current magnetization distrubution during the
solution of the LLG equation. We start with an initial triangulation τ0. The
mesh is refined in regions with non-uniform magnetization, whereas elements
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Fig. 1. Top: Surface of the finite element mesh of interacting NiFe nano-dots. Bot-
tom: Time evolution of the magnetization pattern under the influence of an applied
field

are taken out where the magnetization is uniform. After each time step we
compute the error indicators. Depending on the distribution of the error
indicators one of the following three procedures are applied:

Refinement. The error indicator of at least one element exceeds the global
error tolerance ε. The time step is rejected. The mesh is refined in re-
gions with high ηe. The previously accepted magnetization distribution
is interpolated on the new nodes.

Coarsening. A certain percentage of elements shows an error indicator be-
low a certain threshold, σε, with σ < 1. The time step is rejected and the
current magnetization distribution is interpolated on the initial mesh, τ0.

Proceed in time. Otherwise the time step is accepted and the time inte-
gration continues with the given grid.

The above algorithm guarantees that the simulation proceeds in time only
if the space discretization error is below a certain threshold. Simulations of
wall motion in nanowires show [22] showed that this adaptive scheme reduces
the total CPU time by more than a factor of 4 as compared to a uniform mesh.
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4 Examples

4.1 Magnetostatic interactions between circular nanodots

Circular magnetic nano-dots may be the basic structural units of future mag-
netic logic devices [23]. A critical parameter of these magnetic structures is
the switching speed. As magnetization switching is induced by the magneto-
static interaction field of switched neighboring dots, the switching behavior
is governed by the strength of the magnetostatic interactions and the nonuni-
form magnetization distribution during within the individual dots during the
magnetization reversal process. Fig. 1 shows the finite element mesh (top)
and the time evolution of the magnetization pattern (bottom) of interacting
magnetic nano-dots. The diameter of the dots is 110 nm and their thickness
is 10 nm. The intrinsic magnetic properties of permalloy were used for the
simulations. The reversal time per dot is about 0.5 ns for an applied field
of 5.6 kA/m using a Gilbert damping constant α = 0.1. The magnetostatic
interactions between the dots cause a dot by dot reversal of the chain. The
magnetization of neighboring dots rotates in opposite directions, forming par-
tial flux closure structures during the reversal process.

4.2 Surface roughness in magnetic nanoelements

Magnetic nano-elements have important applications as magnetic field sen-
sors and might be used in future discrete storage media. A well defined switch-
ing field and a predictable domain structure are important prerequisites for
the application of thin film elements. However, both the switching field and
the switching time were found to depend strongly on the physical struc-
ture of the elements such as the surface roughness and the polycrystalline
grain structure. In the following the switching process is compared for three
different Co elements. One element denoted by (A) consists of a perfect mi-
crostructure. The surface is flat, no grains are assumed within the particle
and the crystalline anisotropy is zero. Element (B) takes account of surface
roughness. The notches are in average 8 nm. Element (C) consists of 500
columnar grains (diameter is 8 nm) with random distribution of the mag-
netocrystalline anisotropy directions. All the elements are 400 nm long, 80
nm wide and 25 nm thick. The granular element (C) has the largest coercive
field, Hc = 72 kA/m. The coercive field decreases by less than 10 % for the
perfect Co-element without crystalline anisotropy. Surface roughness leads to
a reduction of the coercive field of about 20%. Fig. 2 shows the onset of mag-
netization reversal for the different elements under the influence of a reverse
field of 100 kA/m. The switching time decreases from 0.75 ns for element (A)
to 0.5 ns for element (C). Again a Gilbert damping constant α = 0.1 was
used. Fig. 3 shows the effect of preconditioning on the time integration error,

ηtime = maxi|1− J · J/J2
s |, (35)
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Fig. 2. Influence of the physical structure on the magnetization reversal of Co
nano-elements. The plots compare the time evolution of (A) a flat element, (B) an
element with surface roughness, and (C) an element with surface roughness and
polycrystalline grain structure. Top row: Remanent magnetization distribution for
zero applied field. Bottom row: Transient magnetic states during irreversible switch-
ing under the influence of a field of 100 kA/m . The component of the magnetic
polarization is color coded. White: J antiparallel toHapp, black: J parallel toHapp

where i runs over all the nodes of the finite element mesh. The BDF solver
without preconditioning does not preserve the norm of the magnetic polariza-
tion vector at the nodes of the mesh. Several renormalization steps of J are
required during the time integration of the LLG equation. Preconditioning
keeps the time discretization error small.

4.3 Domain wall motion magnetic nano-wires

The domain wall motion has been calculated in Co nano-wires as a function
of the wire thickness. The thickness is varied in the range from 10 nm to
40 nm. The length of the wire is 600 nm. Initially, a reversed domain is
created in one end. Under the influence of an applied field the domain with
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Fig. 3. Comparison of the time discretization error, ηtime, for the integration of
the LLG equation for sample (C) using a BDF method and a preconditioned BDF
method

Fig. 4. Sequence of meshes during the motion of a domain wall in a magnetic
nanowire. The coarse mesh has a size of 20 nm. At the wall position the mesh size
is about 4 nm
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Fig. 5. Domain wall velocity as a function of the applied field for different diameters,
d of the Co wire. For d < 20 nm transverse walls occur, for d > 20 nm vortex walls
are energetically more favorable. Both types are found at d = 20 nm

the magnetization parallel to the field direction expands and the domain
wall moves through the wire. During this process the magnetization remains
nearly uniform within the core of both domains. Thus it is sufficient to resolve
only the magnetization transition in the domain wall and use a coarse finite
element mesh within the domains. As the wall moves, the finite element
mesh is adjusted to the current wall position. Fig. 4 gives a sequence of finite
element meshes during wall motion. The structure of the domain wall has a
strong effect on the wall velocity. Thin wires show a transverse wall which
move slowly. In thick wires, a vortex can form within the wall which causes
an increase in the wall velocity. Fig. 5 shows the calculated domain wall
velocities as a function of the applied field.
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