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Abstract. Magnetic switching of small particles, thin film elements and magnetic
nanowires becomes increasingly important in magnetic storage and magneto elec-
tronic devices. Micromagnetic switching events are studied using a hybrid finite
element / boundary element method. The space discretization of the Gilbert equa-
tion leads to a system of ordinary differential equations. Its numerical integration
provides the time evolution of the magnetization under the influence of an external
field. Thermal fluctuations may be treated by a random field. The reversal mode
drastically depends on the Gilbert damping constant. Decreasing the damping con-
stant from a@ = 1 to a < 0.1 changes the reversal mode from uniform rotation to
inhomogeneous switching. The decrease of the damping leads to the formation of
vortices in circular nanodots and to a nucleation process in columnar grains. Elon-
gated Co particles reverse by rotation if the length of the particle is smaller than
25nm. Irreversible switching of longer particles occurs due to the formation of a
nucleus of reversed magnetization and successive domain wall motion.

1 Introduction

The development of advanced magnetic materials such as magnetic sensors,
recording heads, and magneto-mechanical devices requires a precise under-
standing of the magnetic behavior. These applications require a reproducible
magnetic domain structure and a well-defined switching field of the individual
magnetic elements. As the size of the magnetic components approaches the
nanometer regime, detailed predictions of the magnetic properties become
possible using micromagnetic simulations. Micromagnetism is a continuum
theory for the treatment of magnetization processes in ferromagnetic materi-
als. The micromagnetic equations describe the relation between the magnetic
properties and the physical/chemical microstructure of the material. In ad-
dition to the hysteresis properties like remanence, coercive squareness, coer-
cive field, the switching speed becomes increasingly important for magnetic
data storage and magneto-electronic applications. With decreasing size of the
magnetic structures, thermally activated reversal process become significant.
Thermally induced reversal may influence the writing process as well as the
long-term stability of written bits in magnetic recording.

The investigation of the switching behavior has been the subject of re-
cent experimental and theoretical work. Experimentally, in situ domain ob-
servation using Lorentz electron microscopy [1] and time resolved magnetic
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imaging [2] provides a detailed understanding of domain formation and re-
versal processes. The numerical solution of the Gilbert equation of motion
provides the theoretical background for the switching process of ferromag-
netic structures. The switching time considerably depends on the Gilbert
damping constant a. Kikuchi [3] derived the critical value of @ which min-
imizes the reversal time. Critical damping occurs for « = 1 and a = 0.01
for uniform rotation of the magnetization in a sphere and an ultra-thin film,
respectively. Leineweber and Kronmdiller [4] investigated the reversal dynam-
ics of small hard magnetic particles using a dynamic finite element method.
They reported a waiting time after the application of an applied field, before
the nucleation of reversed domains is initiated. Koch and coworkers [5] inves-
tigated the switching dynamics of micron-sized magnetic thin films experi-
mentally and numerically. They observed switching times well below 500 ps.
Albuquerque and co-workers [6] presented a finite difference method to ef-
fectively solve the Gilbert equation for thin film structures used in current-
tunnel junction MRAM devices. A sequence of tailored field pulses causes a
quasi-coherent switching in the subnanosecond regime, as short scale fluctu-
ations are damped out quickly. Garcia-Palacios and Lazaro [7] numerically
solved the Langevin equation which describes magnetization processes at fi-
nite temperatures for a single magnetic moment. They reported important
phenomena like crossing-back or multiple crossing of the energy barrier which
are attributed to the gyromagnetic nature of the system. Zhang and Fredkin
[8] used the finite element method to study thermally activated reversal in
ellipsoidal particles large enough to show an inhomogeneous reversal process.

Finite element based micromagnetic codes effectively treat the microstruc-
ture of the system, including the shape of the magnet and the irregular grain
structure [9]. The polyhedral shape of the magnetic particles leads to a non-
uniform demagnetizing field which significantly influences the reversal pro-
cess. Such as in finite element field calculation, micromagnetic finite element
simulations introduce a magnetic scalar or magnetic vector potential to calcu-
late the demagnetizing field. Fredkin and Koehler [10] proposed a hybrid finite
element (FE) / boundary element (BE) method to treat the open boundary
problem associated with calculation of the magnetic scalar potential. This
method is accurate and allows to calculate the magnetostatic interaction be-
tween distinct magnetic elements without any mesh between the magnetic
particles.

This work combines a hybrid finite element (FE) / boundary element (BE)
method for the magnetostatic field calculation with the numerical interac-
tion of the Gilbert equation of motion. Dynamic and thermal switching ef-
fects are investigated in circular nanomagnets, columnar grains, and magnetic
nanowires. Section 2 of the paper describes the micromagnetic and numeri-
cal background of the simulation method. Section 3 presents numerical results
on thermally activated switching of small particles and wires. The switching
speed of magnetic wires results from the corresponding domain wall veloc-



Micromagnetic Simulation of Switching Events 3

ities which are calculated in section4. Section treats the influence of the
damping constant on the reversal processes in columnar grains and circular
nanodots.

2 Micromagnetic and Numerical Background

The theoretical treatment of thermally activated magnetization reversal re-
quires to solve the Langevin equation numerically. The Langevin equation
follows from the Gilbert equation of motion by adding a random thermal
fluctuation field to the effective magnetic field. The deterministic Gilbert
equation [11] is believed to describe the physical path of the magnetization
towards equilibrium, taking into account gyromagnetic precession and damp-
ing. In real systems thermal fluctuations change the deterministic motion of
the magnetization into a random walk. A theoretical description must treat
magnetization reversal as a stochastic process. The magnetic properties like
the coercive field and the switching time follow from averages over many
numerical realizations of the reversal process.

2.1 Langevin Micromagnetics
The Langevin equation [12]
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describes the random motion of the magnetic polarization vector

J = (J1,J2,J3) = poM at finite temperatures. The first term on the right
hand side of equation (1) accounts for the gyromagnetic precession, the second
term arises from viscous damping. v is the gyromagnetic ratio of the free
electron spin v = 2.21 x 10° m/(As); « is the Gilbert damping constant. The
critical value of o which minimizes the relaxation time was found to o =1 at
zero temperature [3] and thermally activated reversal [13]. The effective field,
Hes = —6E;/dJ, is the variational derivative of the total magnetic Gibbs
free energy

Et:/
[0

E is the sum of the exchange energy density, the magneto-crystalline anisotropy
energy density, the magnetostatic energy density, and the Zeeman energy
density. A is the exchange constant, J; = |J| is the spontaneous magnetic
polarization, K, is the uniaxial anisotropy constant, and u is the anisotropy
direction. Heyy is the external field. The demagnetizing field Hy follows
from the magnetic scalar potential Hy = —VU which satisfies the Poisson
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equation inside the magnetic particles and the Laplace equation outside the
magnets.

In order to treat thermally activated processes a stochastic, thermal field,
Hyy,, is added to the effective field, Heg. The thermal field is assumed to be
a Gaussian random process with the following statistical properties:

(Hin,i (r,t)) = 0, 3)
<ch,z' (T,t) ch,j (’l"l, tl)) = D(SZJ(S ('r‘ — ’I‘I) 1) (t — tl) . (4)

The average of the thermal field, taken over different realizations, vanishes
in each direction ¢ in space. The thermal field is uncorrelated in time and
space. The strength of the thermal fluctuations follow from the fluctuation-
dissipation theorem [14]:

2akpT
D= :
v ()

2.2 Space and Time Discretization

The Cartesian components of the magnetic polarization vector, J, and the
magnetic scalar potential, U, are interpolated with piecewise linear functions
on a tetrahedral finite element mesh. A hybrid finite element / boundary
element method is used to solve the magnetostatic boundary value problem.
The effective field at the node [ of the irregular finite element mesh may be
approximated using a box scheme:

HO 1 OB (...,J¢V, gb gy ) 6
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where V) is the volume associated with the node I. The following conditions
hold for the box volumes

vl = / dv and VO NV =0 forl+#m. (7)
7 2int

The Langevin equation (1) is solved using the method of Heun. It reduces
to three stochastic differential equations for each node of the finite element
mesh, using the box scheme (6) to approximate the effective field. For T' = 0
the Langevin equation reduces to a system of ordinary differential equation
which is solved using backward difference formulas or higher order Adams
methods, depending on the stiffness of the equations [15].
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3 Thermally Activated Switching

The basic structural units of magnetic recording media are particles or grains
in the nanometer range. Data is stored in small regions consisting of several
grains or particles which have their magnetization oriented in two allowed
directions. With increasing recording density the grain size as well as the
number of grains or particles forming a bit becomes smaller. With decreasing
size of the elementary storage volumes, thermally activated magnetization
reversal becomes an important issue in magnetic recording [16]. Thermal ac-
tivation governs the time dependence of the magnetization. Therefore, ther-
mal effects are relevant to the high speed switching of the magnetization in
the write process and to the long term thermal stability of the written bit.
The irreversible switching of the particle occurs either by the rotation of the
magnetization or by the expansion of a nucleus of reverse magnetization.
Both processes are associated with activation energy and may be described
using the Arrhenius-Néel model. At finite temperatures, random magnetic
field fluctuations help to overcome the reversal barrier [17,18]. The stochas-
tic fluctuation field arises from the interplay of the lattice vibrations and
the magnetization. The probability of irrversible switching is given by the
probability per unit time of crossing the energy barrier

p = foexp(—E/ksT), (8)

where fy is a thermal attempt frequency for barrier crossing, kg denotes
the Boltzmann factor, and T is the temperature. The reciprocal of the switch-
ing probability is the relaxation time

7 = fy ' exp(E/ksT). (9)

The attempt frequency fy depends on material parameters, like anisotropy,
particle shape, and damping [19]. The value which ranges from fo = 10° Hz to
fo = 10'2 Hz sets the time scale for thermally assisted magnetization reversal
T =fy '~ 1ns.

The activation energy and the attempt frequency can be estimated for
coherent rotation of the magnetization in single domain particles [18] and the
nucleation of reversed domains in thin ferromagnetic wires [19]. The intrinsic
magnetic properties of Co (Js = 1.76 T, A = 1.3x 107!, K, = 6.8x10° J/m?)
and a Gilbert damping constant o = 1 were assumed for the calculations.
The particles have a diameter d = 2nm and an aspect ratio of 2:1, 4:1, and
16:1, respectively.

3.1 Thermally Activated Reversal of Ellipsoidal Particles

The extension of the ellipsoid is comparable with the exchange length, lox.
Thus it is expected to reverse by coherent rotation. According to the Stoner-
Wohlfarth theory the field dependence of the activation energy, E(H), is [20]:
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H 2
E(H) =KV (1 - —> , (10)
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K is the effective anisotropy constant taking into account the shape of the
particle; V' is the particle volume; N and N are the demagnetizing factors
parallel and normal to the symmetry axis. A fit of the calculated relaxation
time 7 using equation (2) provides the energy barrier from numerical exper-
iments. Figurel shows that In7 versus 1/kgT forms a straight line in the
investigated field and temperature range.
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Fig. 1. Relaxation time as a function of KV/ksT for different applied fields. The
inset gives the finite element model of the ellipsoidal particle
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3.2 Thermally Induced Nucleation in Magnetic Nanowires

The cylindrical particle with an aspect ratio of 4:1 reverses by uniform ro-
tation. Again the relaxation time as a function of the inverse temperature
forms a straight line in a semi-logarithmic plot.

The formation of a nucleus of reverse magnetization at the end starts
the reversal process in the nanowire with an aspect ratio of 16:1. Using an
analytical model, Braun [21] estimated the energy barrier for the nucleation
in a nanowire

3/2
E(H) = (8/3)r*nVAK (1 - HEK) , (13)

where r is the radius of the wire. Figure2 gives the energy barriers, E(H),
as a function of the field for the ellipsoid and the nanowire with the aspect
ratio 16:1. For the ellipsoid, the numerical values for the activation energy
agree perfectly with the analytical results given by equation (10). For the
nanowire, the energy barriers according to equation (13) exceed the numeri-
cal results by about a factor of 2 to 3. This may be attributed to inhomoge-
neous magnetic states across the wire, which are neglected in the analytical
model. These magnetic inhomogeneities arise from thermal fluctuations and
the highly nonuniform demagnetizing field near edge at the ends of the wire.

An effective activation volume can be derived under the assumption that
the activation energy corresponds to the energy of the nucleus of reverse
magnetization

E(H) = —vJ,H. (14)

Then the activation volume, v, can be derived from the slope of E(H)

v=-192 (15)
Js 0J

Figure2 clearly shows that the activation energy for the wire depends lin-
early on the applied field within the investigated field range. This behavior
indicates that magnetization reversal occurs by the formation of a nucleus
of reverse magnetization [20]. The analysis of the calculated magnetization
configurations as a function of time confirms a nucleation mechanism. The
magnetization starts to reverse within a finite volume at one end of the wire.
Once a reversed domain has formed, it expands along the entire wire. The
calculated activation volume, v = (2.1 nm)3, was found to be independent of
the length of the nanowire. Li and co-worker [22] obtained a similar result
from magnetic measurements on a-Fe nanowires.
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Fig. 2. Activation energy as a function of the applied field. The open symbols
give the numerical values. The dashed lines give the analytical results according to
equation (10) and (13). The dotted line is a linear fit of the numerical values for
the nanowire

4 Domain Wall Motion in Magnetic Nanowires

The total reversal time of a magnetic wire is the sum of the relaxation time
to create a nucleus of reverse magnetization and the time required for the
expansion of the reversed domain. The latter is associated with the domain
wall velocity. The domain wall velocity was calculated as a function of the
applied field for a Co-nanowire with a diameter of 40nm. The Gilbert damp-
ing constant was a = 0.1. The expansion of a reversed domain under the
influence of an applied field was investigated for Co-wires with a length of
600nm. The average magnetization parallel to the long axis was found to
decrease linearly with time as long as the domain wall was far away from the
ends. The slope of the curve increases with increasing field strength. Figure3
shows the calculated wall velocity as a function of the applied field.

An adaptive mesh refinement scheme [23] was used for the simulations.
The finite elements are subdivided near the center of the wall, whereas a
coarse grid is used in regions where the magnetization is nearly uniform.
During the simulations, the mesh is adjusted to the current wall position.
The adaptive mesh scheme keeps the number of finite elements low while it
resolves the micromagnetic details of the wall structure.
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Fig. 3. Domain wall velocity calculated for a Co-nanowire with a diameter of 40 nm
and a Gilbert damping constant & = 0.1. The inset maps the magnetization com-
ponent parallel to the field at the surface of the wire
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Fig. 4. Adaptive meshing and CPUtime. The solid lines give the magnetization
parallel to the long axis as a function of time for a coarse uniforngrid, a fine
uniform grid, and an adaptive grid. The dashed curves compare the CPU time
(Athlon 900Mhz) required on the uniform grid and on the adaptive grid.
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Figure4 compares the time evolution of the magnetization for a coarse
uniform grid, a fine uniform grid, and the adaptive grid. The results clearly
show that a sufficiently fine grid is required to obtain the linear dependence
of the magnetization as a function of time. However, instead of a fine uniform
grid, the adaptive mesh method can be used. It provides nearly similar results
for the wall velocities and drastically decreases the CPU time.

5 Influence of the Damping Constant

5.1 Columnar Grains

In recent years there has been a renewed interest in perpendicular recording
since an improvement of the areal density in longitudinal recording is get-
ting increasingly difficult. The main advantage of perpendicular recording is
that the areal density can be increased without reducing the volume of the
magnetic bit. A large volume of the magnetic domain can be realized with an
increased column length (film thickness). For coherent rotation a higher grain
volume leads to a higher energy barrier and hence to an improved thermal
stability. However, if the column length becomes too large the reversal mode
might change from uniform rotation to nucleation. The latter process has an
energy barrier which is independent of the column length [24]. In the follow-
ing the maximum exchange energy during reversal was used to distinguish
between the two reversal modes.

Figure 5 compares the exchange energy as a function of the column length
for high and low damping. Vanishing exchange energy indicates uniform rota-
tion. Clearly, a small damping constants induces the nucleation of a reversed
domain for small particles even for a small column length.

5.2 Circular Nanomagnets

Micromagnetic simulations of magnetization reversal in circular nanomag-
nets show that the reversal process strongly depends on the thickness of
the elements [25]. With increasing thickness the demagnetizing field becomes
important leading to partial flux-closure structures during reversal, if the
diameter of the nanodot is greater or equal 110nm. For the very same rea-
son vortices form during the reversal process for a thickness of 15nm and a
diameter greater or equal 165 nm.

Figure6 compares the time evolution of the magnetization for different
damping constant. For @ = 1 the nanodot start to switch only after a waiting
time of about 3ns. For a = 0.01 the waiting time reduces to about 0.5ns.
Figure 7 shows that the reversal process changes if the damping constant is
decreased. For a = 1 inhomogeneous rotation occurs. For a = 0.01 vortices
are formed during reversal. Whereas in simulations with @ = 1 only one
vortex occurs (provided the samples have a sufficiently large diameter and
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Fig. 5. Maximum exchange energy during reversal as a function of the column
length. The inset gives the shape of the irregular grain

thickness), for & = 0.01 two vortices are formed at the beginning (A in Figs. 6
and 7). These two vortices combine to one vortex after 1ns. As a consequence
the magnetic polarization increases until one big vortex is formed (B in Figs. 6
and 7).
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