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Computational Micromagnetics: Prediction of time dependent and thermal 
properties
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ABSTRACT

Finite element modeling treats magnetization processes on a length scale of several nanometers
and thus gives a quantitative correlation between the microstructure and the magnetic properties
of ferromagnetic materials. This work presents a novel finite element / boundary element micro-
magnetics solver that combines a wavelet-based matrix compression technique for magnetostatic
field calculations with a BDF / GMRES method for the time integration of the Gilbert equation of
motion. In addition to the hysteresis properties, the numerical solution of the Gilbert equation
simulations show that metastable energy minima and nonuniform magnetic states within the
grains are important factors in the reversal dynamics at finite temperature.ation shows how
reversed domains nucleate and expand. In an array of acicular NiFe elements the switching field
varies by about 8 kA/m depending on the magnetic state of neighboring elements. The switching
time of submicron magnetic elements depends on the shape of the elements. Elements with
slanted ends decrease the overall reversal time, as a transverse demagnetizing field suppresses
oscillations of the magnetization. Thermal activated processes can be included adding a random
thermal field to the effective magnetic field. Thermally assisted reversal was studied for
CoCrPtTa thin film media. 
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1. Introduction

The development and application of modern magnetic materials requires a basic understanding of
the magnetization processes that determine the magnetic properties. Micromagnetics relates the
microscopic distribution of the magnetization to the physical and chemical microstructure of a
material. Recently, micromagnetic modeling has become an important tool to characterize the
magnetic behavior of such different materials as thin film heads, recording media, patterned mag-
netic elements, and nanocrystalline permanent magnets. In addition to magnetic imaging, compu-
tational micromagnetics has become an important tool to investigate domain formation and
magnetization reversal [1]. The finite element method provides a general framework to calculate
static, dynamic, and thermal properties of magnetic materials used as permanent magnets, sensors
or recording media. Micromagnetic finite element simulations are highly flexible, since it is pos-
sible to incorporate the physical microstructure and to adjust the finite element mesh according to
the local magnetization [2]. 

The rapid progress of nanotechnology will lead to novel application of magnetic materials in spin
electronic devices, magnetic sensors, and functional materials within the next years [3]. A prereq-
uisite for the application of structured magnetic materials is the detailed knowledge of the correla-
tion between the physical and magnetic structure of the system. The design of smart materials
requires to predict the response of the system to external fields and temperature as a function of
time. Magnetic sensors and magneto-mechanic devices consist of spatially distinct ferromagnetic
parts. Modeling their functional behavior requires to take into account the magnetostatic interac-
tions between the magnetic elements. This work introduces a novel method for micromagnetic
simulations that combines a hybrid finite element (FE) / boundary element (BE) method with a
wavelet matrix compression technique. Time integration schemes based on backward difference
methods proved to be efficient for the simulation of time dependent effects, since the micromag-
netic equations are stiff. This method is applied to simulate the switching dynamics of magnetic
elements used in MRAM storage technology, where accurate prediction of the switching behavior
is required. With increasing recording density and decreasing bit size, thermally activated magne-
tization reversal becomes an important issue in magnetic recording [4]. This work combines a
finite element model of the media with numerical methods for stochastic differential equations, in
order to solve the Langevin equation. The Langevin equation is believed to describe the random
motion of the magnetization at finite temperatures. The finite element method effectively treats
the granular structure of thin film recording media. Variations in the size and shape of the grains
and the Cr segregation near grain boundaries can be taken into account. The magnetization within
each grain may become nonuniform, as each grain is further subdivided into tetrahedral finite ele-
ments. 

2. Micromagnetic and numerical background

Numerical micromagnetics starts from the total magnetic Gibbs free energy, Et, which is the sum
of the exchange energy, the magneto-crystalline anisotropy energy, the magnetostatic energy, and
the Zeeman energy, and the magneto-elastic energy. The internal magnetostriction can be
expressed in the same mathematical form as the uniaxial or cubic magnetocrystalline anisotropy.
Therefore, magneto-elastic effects may be ingored in the derivation of the governing equations.
The total energy can be written as follows [5]:
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, (1)

where J = (β1,β2,β3)Js denotes the magnetic polarization. A is the exchange constant and fk is  the
magnetocrystalline anisotropy. Hd and Hext denote the demagnetizing and the external field,
respectively. The minimization of Et provides an equilibrium distribution of the magnetic polar-
ization. In order to resolve time dependent magnetization processes at finite temperatures, the
Langevin equation [5]

(2)

has to be solved. In order to treat thermally activated processes a stochastic, thermal field, Hth, is
added to the effective field, Heff. It accounts for the interaction of the magnetic polarization with
the microscopic degrees of freedom which causes the fluctuation of the magnetization distribu-
tion. The effective field, Heff = – δEt/δJ, is the variational derivative of the magnetic Gibbs free
energy. γ is the gyromagnetic ratio of the free electron spin, and α is the dimensionless Gilbert
damping constant. (2) gives the physical path of the system towards local energy minima. The
first term describes of the right hand side the gyromagnetic precession under the influence of ther-
mal perturbation. The second term is a phenomenological damping term [6]. The damping term
causes the magnetization to become aligned parallel with the effective field. Thermal fluctuations
cause the magnetization to from a random walk around its equilibrium position. If Hth is zero,
equation (2) reduces to the Gilbert equation [6]. Fig. 1 compares the deterministic motion and the
stochastic motion at 300K for a single magnetic moment. At the time t = 0, the angle between the
magnetic moment and the magnetocrystalline anisotropy axes was set to 45°.

The effective field  at the node k of an irregular finite element mesh may be approximated
using the box scheme

, (3)

where Vk is the volume associated with the node k. The following conditions hold for the box vol-
umes

for k ≠ l. (4)

The magnetic polarization is defined on the nodal point of the finite element mesh and is interpo-
lated linearly within the each finite element. 

The thermal field is assumed to be a Gaussian random process with the following statistical prop-
erties:

, (5)

(6)
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The average of the thermal field vanishes taken over different realizations vanishes in each direc-
tion i in space. The thermal field is uncorrelated in time and space. The strength of the thermal
fluctuations follow from the fluctuation-dissipation theorem:

, (7)

where kB is the Boltzmann constant. The space discretization of (2) leads to a system of Langevin
type equations with multiplicative noise. 

At zero temperature the noise term vanishes and time integration can be performed using standard
packages [7] for stiff differential equations. Tsiantos and co-workers [8] showed that the micro-
magnetic problem becomes considerably stiff in highly exchange coupled systems. In the stiff
regime a combined BDF (backward difference formulae) / GMRES (generalized minimum resid-
ual) method was found to be faster than explicit time integration schemes like the Adams method
or Runge-Kutta type methods. At finite temperature the noise term has to be taken into account.
As shown by Garcia-Palacios and Lazaro [9] the equation has to be interpreted in the sense of
Stratonovic, in order to obtain the correct thermal equilibrium properties. The numerical integra-
tion of the stochastic differential equation is performed using the method of Heun. For the pure
deterministic case the Heun method reduces to the standard second order Runge-Kutta method
[10]. Numerical studies for simple spin systems confirmed that the Heun scheme is numerically
more stable and allows larger time steps than the Euler or the Milshtein scheme [11]. 

In order to speed up the calculation of the demagnetizing field Hd, we introduce a magnetic scalar
potential, U, which eliminates the long range terms from (1) [12]. A hybrid finite element /
boundary integral method [13] is used for computing the magnetostatic boundary value problem
for U. This method is especially useful for the simulation of the magnetostatic interactions of dis-
tinct magnetic elements, since no mesh is required outside the magnetic particles. We split the
total magnetic scalar potential into U = U1 + U2. The potential U1 accounts for the divergence of
magnetization within the particle and U2 is required to meet the boundary conditions. The latter
also carries the magnetostatic interactions between distinct magnetic particles. The potential U1 is
the solution of the Poisson equation with the natural boundary condition at the surface of the mag-
netic particle. The potential U2 satisfies the Laplace equation everywhere and shows a jump at the
surface of the particle. The computation of U consists of three steps:

1. A standard finite element method is used to solve Poisson’s equation for U1.
2. The potential U2 is calculated at the boundary

U2 = B U1 (8)

where B is a mxm matrix which relates the nodes at the surface to each other and U1 is the vec-
tor of the U1 values at the surface nodes. The matrix B is dense and follows from the boundary
element discretization of the double layer operator.

3. Once U2 at the boundary has been calculated, the values of U2 within the particles follow from
Laplace's equations with Dirichlet boundary conditions, which again can be a solved by  stan-
dard finite element technique.

D
k( ) αkBT

γJsVk

-------------=
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A discrete wavelet transform [14] is applied to transform the matrix B and U1. The matrix vector
product (8) can be evaluated in the wavelet bases. A sparse matrix is obtained after setting small
elements of the transformed matrix to zero. Only about 10% non-zero entries remain, which sig-
nificantly reduces the storage requirements and computation time for the calculation of U2. 

3. Magnetostatic interactions of magnetic nano-elements

Magnetic nano-elements may be the basic structural units of future patterned media or magneto-
electronic devices [15]. Different magnetization reversal mechanisms occur depending on the
strength and direction of the magnetostatic interaction field. The simulations predict a spread in
the switching field due to magnetostatic interactions in the order of 8 kA/m for 200 nm wide,
3500 nm long and 26 nm thick NiFe elements with a center-to-center spacing of 250 nm. Fig. 2
gives the particle configuration used for the calculations. The original boundary element matrix of
the system consists of 1.1 x 107 elements. After transformation and thresholding the matrix con-
tains 1.9 x 106 non-zero entries, giving a sparsity of 83%. The demagnetization curve of the mid-
dle element was calculated for a pair of switched or unswitched neighbors. The magnetization of
the neighboring elements was fixed assuming a small uniaxial anisotropy parallel to the long axis.
Fig. 3 compares the numerically calculated demagnetization curves obtained with the conven-
tional boundary element method and with wavelet based matrix compression. In configuration A,
the magnetostatic interaction field of the switched neighbors stabilizes the center element. In con-
figuration B, the interaction field of the neighbors favors the reversal of the center element. The
comparison shows that the wavelet based matrix compression method provides accurate results.
Numerical studies showed [16] that the error owing to matrix compression is in the range from
2 % to 5 %, for a sparsity between  80% a nd 90%. The numerical results agree well with experi-
mental data obtained from Lorentz microscopy [17].

4. Switching dynamics of submicron elements

Koch and coworkers [18] investigated the switching behavior of micron-sized magnetic thin films
experimentally and numerically. They observed switching times less then 500 ps. In this work, the
influence of the geometric shape on the reversal dynamics was investigated. Submicron NiFe ele-
ments with an extension of 200x100x10 nm3 switch well below 1 ns for an applied field of 80 kA/
m, assuming a Gilbert damping constant of 0.1. The elements reverse by nonuniform rotation.
Under the influence of an applied field, the magnetization starts to rotate near the ends, followed
by the reversal of the center. This process only requires about 0.1 ns. In what follows, the magne-
tization component parallel to the field direction shows oscillations which decay within a time of
0.4 ns. The excitation of spin waves originates from the gyromagnetic precession of the magneti-
zation around the local effective field. A much faster decay of the oscillations occurs in elements
with slanted ends, where surface charges cause in transverse magnetostatic field. Fig. 4 which
compares the time evolution of the magnetization for NiFe elements with rounded and slanted
ends clearly shows the effect of the element symmetry on magnetization reversal. To further ana-
lyze this ringing phenomena Fig. 5 gives the Zeeman energy, the exchange energy, and the mag-
netostatic energy as a function of time. The plots show that an energy transfer occurs from
magnetostatic energy to the exchange and Zeeman energy and vice versa. During the initial rota-
tion of the magnetization, magnetic surface charges at the edges drastically increase the magneto-
static energy. In what follows, a nonuniform state which reduces the magnetostatic energy is
formed. The magnetization changes periodically between a highly nonuniform magnetic states
with low magnetostatic but high exchange energy and a magnetic state with high magnetostatic
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energy. In addition, Fig. 5 presents a snapshot of the magnetization configuration during this pro-
cess.

5. Thermal processes in thin film media

Finite element based micromagnetics is applied to study thermally assisted switching of thin film
media in the high speed regime. Fig. 6 shows the finite element model of the grain structure.  The
magnetization within each grain may become nonuniform, as each grain is further subdivided into
tetrahedral finite elements. The film thickness is 20 nm. The magnetocrystalline anisotropy axes
are randomly oriented in-plane. The width of the Cr-enriched region near the grain boundaries is
about 2 nm. In addition, Fig. 6 gives the demagnetization curves obtained from deterministic cal-
culations. The step at an external field of Hext = – 250 kA/m indicates a metastable magnetization
configuration which has to be passed during magnetization reversal. 

In the numerical experiments the following procedure was applied. First the sample was saturated
under the influence of an applied field of three times the anisotropy field. Then the field was
reduced to zero and the remanent state was calculated. Both calculations where performed
neglecting thermal fluctuations. The resulting magnetization configuration was used as initial
state to calculate the thermal equilibrium state at 300 K for zero applied field using Langevin
dynamics. Then a reversed field was instantaneously applied to the thermal equilibrium state, in
order to simulate magnetization reversal at finite temperatures. The intrinsic magnetic properties
(Js = 0.43 T, Ku = 2.2 x 105 J/m3) where taken from [19]. The exchange constants where adjusted
to A = 10-11 J/m and A* = 0.6x10-11 J/m, in order to obtain a coercive field of about 255 kA/m at
300 K. A and A* denote the intragrain and intergrain exchange constants, respectively. The simu-
lations of magnetization reversal were repeated several times, taking into account the stochastic
nature of the process. The magnetization switches in less than 1 ns in about 80% of the calcula-
tions. However, reversal times up to 20 ns and higher are observed for about 20% of the realiza-
tions. Fig. 7 which gives the probability of not switching shows that the fraction of systems which
remain unswitched after 1 ns decreases with increasing reversed field. The applied field is about
70% of the deterministic coercive field.

The system switches from the high remanent state to a meta-stable state where it may remain
trapped for several nanoseconds. Fig. 8 gives the magnetization distribution in the remanent state,
r, and in the metastable state, m. In the metastable state the bottom left grain has changed its mag-
netization direction. For further visualization of the stochastic reversal process, we plot the differ-
ence between the current magnetic state and the remanent state, r, as illustrated in Fig. 8. The grey
scale maps the difference between the remanent state, r, and the meta-stable state, m. Fig. 9 com-
pares the time evolution of the magnetization patterns for two different realizations of the stochas-
tic process. The system either switches rapidly, forming a channel of reversed magnetization (A).
Or the magnetization oscillates around the metastable state (B). After the partial reversal of the
center grain, the system turns back to a state close to the original metastable state. This process is
repeated several times, as the oscillations are triggered by thermal fluctuations. Eventually the
system may escape from the metastable state, leading to a complete reversal. The results clearly
show that metastable energy minima and nonuniform magnetic states within the grains are impor-
tant factors in the reversal dynamics at finite temperature.
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6. Summary

The results of micromagnetic finite element calculations enable the visualization of complex
magnetization phenomena. Thus modeling provides a better understanding of fast switching
dynamics at finite temperatures. The application of state of the art numerical techniques for the
solution of the partial differential equations considerably reduces computation time.
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Figure captions

Fig. 1. Path of the magnetization vector towards equilibrium for a small Co sphere. Gyromagnetic
precession dominates the motion for a damping parameter of α = 0.01.  Left: Deterministic
motion neglecting thermal fluctions; right: Random walk at 300 K.

Fig. 2. Array of NiFe nanoelements for the simulation of magnetostatic inteactions, using the
boundary element method (solid line) and wavelet based matrix compression (dashed line).

Fig. 3. Numerically calculated demagnetization curves of the center element for a pair of
switched (A) and unswichted (B) neighbors. Solid lines: conventional boundary element method,
dashed line: wavelet based matrix compression.

Fig. 4. Time evolution of the magnetization for a NiFe element with an extension of
200 x 100 x 10 nm3. The Gilbert damping constant used in the calculations was 0.1. 

Fig. 5. Micromagnetic energy contributions as a function of time the reversal of the element with
rounded end. The dotted, dashed and long-dashed line give the magnetostatic, exchange, and Zee-
man energy, respectively. The inset shows the magnetization distribution after 0.18ns.

Fig. 6. Left: Model of a CoCrPtTa thin film medium for the investigation of thermally activated
reversal processes. Right: Demagnetization curve obtaind from  solving Gilbert equation.

Fig. 7. Probability of not switching of the model system for different reversed fields.

Fig. 8. Plots of the difference from the remanent state provide a means to visualize magnetization
reversal.

Fig. 9. Magnetization patterns as a function of time for two different realizations of the stochastic
reversal process under the influence of a field of Hext = – 255 kA/m.
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Figure 4
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Figure 5

Figure 6
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Figure 7
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Figure 8
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