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Abstract
A detailed description for the solution of the Landau-Lifshitz-Gilbert equation with the

finite element method is given. The use of implicit time integration schemes with proper pre-

conditioning is reported. Simulations of a single phase magnetic nanoelement without surface

roughness and a magnetic nanoelement with a granular structure are performed to investigate

the influence of the microstructure on the numerical behavior. Nanoelements with a granular

structure cause an inhomogeneous computational grid. In granular systems preconditioning

for time integration speeds up the simulations by three orders of magnitude as compared to

conventional time integration schemes like the Adams method. 

1 Introduction

Numerical micromagnetics is an essential tool to optimize magnets in magnetic storage

and sensors. The application of these devices requires a profound knowledge of the reversal

mechanism. Using the Landau-Lifshitz-Gilbert (LLG) equation the time evolution of the

magnetization can be calculated. The treatment of systems with realistic size leads to a system
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of ordinary differential equations with up to one million unknowns. State of the art time inte-

gration schemes provide an efficient numerical solution of the equations. 

Traditionally explicit time integration methods are used in numerical micromagnetics.

These methods are easy to apply since only the right hand side of the Landau-Lifshitz-Gilbert

equation has to be evaluated. Victora applied a Runge-Kutta [1] method to solve the Landau-

Lifshitz-Gilbert in an array of columnar CoNi particles. Different types of Adams formulas

are commonly used in micromagnetics. Mansuripur applied an Adams method [2] to calculate

the time evolution of a thin film recording media. The Adams method that Zhu and Bertram

used [3] is a varying order and varying step-size method and is well described by Gear [4].

Jones and Miles [5] used the LLG equation to simulate the magnetic behavior of a metal evap-

orated tape. They performed the integration by using a variable-order variable-step Adams

method. More specifically, they used the NAG D02CHF routine. Tako et al [6] used the

Adams 4th-order predictor-corrector method with error control and step size adjustment

described in [7]. McMichael and Donahue use a second order predictor-corrector technique

of the Adams type to calculate the dynamic response of magnetic nanoelements [8].

However, for highly exchange coupled systems or complex microstructures the Adams

methods and explicit time integration schemes require an intolerable small time step to main-

tain numerical stability. These problems are supposed to be stiff and can be more suitably

solved with backward differentiation forumla methods. Originally, Hayashi and Nakatani [9]

applied the backward Euler method which is a backward differentiation method (BDF) of

order 1, to solve the Landau-Lifshitz equation for magnetic bubble domain wall motion.

Albuquerque and Miltat [11] treat the exchange term implicitly applying the Crank Nicolson

method. This scheme applies a feedback mechanism from monitoring the damping coeffi-

cient, maximum torque and total energy to obtain high accuracy. E and Wang [10] developed

a projection method. The key point of this method is that they relax the condition that the

magnitude of the magnetization vector remains constant. After each time step the magnetiza-

tion vector is projected back to the unit sphere. The proposed method is unconditionally sta-

ble.

The above methods are used together with a finite difference method for space discretiza-

tion. The finite element method allows irregular grids suitable for complex microstructures

and adaptive refinement. For explicit methods the maximum suitable time step is propor-

tional to hg
2, where hg is the mesh size. Thus a fine mesh which, is required to resolve magne-

tization inhomogeneities near edges or grain boundaries, limits the time step of explicit
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methods. BDF methods are more suitable. However, the linear system which has to be solved

at every time step as part of the Newton method is ill conditioned. Proper preconditioning

decreases the number of iterations when the system is solved iteratively and thus speeds up

the computation considerably.

 Yang and Fredkin [12] developed a numerical procedure to study the dynamic behavior in

micromagnetic systems using the finite element method.   They solved the damped Gilbert

equation for a continuous magnetic medium, including all the interactions in standard micro-

magnetic theory in 3D regions of arbitrary geometry and physical properties. The magnetiza-

tion is linearly interpolated in each tetrahedral element in a finite element mesh from its value

on the nodes, and they use the Galerkin method to discretize the dynamic equation. The

demagnetizing field is computed by solving Poisson's equation and they treat the external

region by means of an asymptotic boundary condition. They apply the CVODE code [14-15]

to solve the stiff system of ordinary differential equations. CVODE provides the option to

solve the equations either with the Adams or a backward differentiation formula (BDF)

method. In order to apply a preconditioner for the linear system, CVODE requires an

approximate Jacobian, which is the first derivative of the right hand side of the Landau-Lif-

shitz-Gilbert equation. Yang and co-workes cannot supply the Jacobian explicitly because

they use the Galerkin method for space discretization. However, they are able to give a suit-

able approximation. A more detailed description of the numerical methods for ODEs in

micromagnetics is given in [13]. 

In this paper we use the finite element method to compute the dynamic response of thin

film elements of different shape and structure. Starting from the finite element discretization

of the total energy, the effective field can be evaluated using the box method. Each node has

its magnetic moment and its effective field. Thus the right hand side of the LLG equation and

the Jacobian can be calculated explicitly. For the preconditioning only an approximation of

the Jacobian is needed. Thus it is possible to keep the approximated Jacobian sparse, omitting

the stray field part. In section 2 we introduce the finite element techniques used for space dis-

cretization, the calculation of the effective fields, and the approximate Jacobian. The demag-

netizing field is calculated using a hybrid finite element boundary method as discussed in

section 3. Section 4 treats the time integration of the discretized LLG equation. Section 5

gives numerical examples. The Adams method, the BDF method and the preconditioned

BDF method are compared for µMAG Problem # 4 and a thin film element with granular
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microstructure. The results show a considerable decrease of the CPU time for the precondi-

tioned BDF method for all investigated samples. 

2 Method

Using micromagnetics the theoretical treatment of magnetization dynamics at zero tem-

perature starts from the Gilbert equation [17], 

, (1)

where J is the magnetic polarization vector, Heff is the effective field, and Js is the sponta-

neous polarization. J is assumed to be a continuous function of space. To obtain the general

form for an ordinary-differential equation (ODE), we transform equation (1)

into the mathematically equivalent Landau-Lifshitz-Gilbert (LLG) equation

, (2)

with the gyromagnetic ratio

, (3)

and the Gilbert damping constant α.

The finite element method is used to discretize equation (2). The magnetic polarization

 is expanded with linear basis functions . For one component of  we can write

. (4)

 is the finite element approximation of the k - component of the magnetic polar-

ization. The coefficient  denotes the k-th component of the normalized spontaneous

polarization ( ) on the node point i. The number of unknowns ( ) is three times the

number of node points of the finite element mesh. The basis functions obey

. (5)
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For practical reasons, the expansion of the unknown function is usually done on an ele-

ment by element fashion in finite element packages. For the magnetic polarization follows

. (6)

Ne and Nb denotes the number of finite elements and number of nodal points, respec-

tively. Js,e is the spontaneous polarization of element e. If we use linear polynomials for the

shape functions  the vertices of the finite elements are equal to the nodal points. At a

nodal point i the values of the reduced magnetic polarization  are given by the coeffi-

cients . If tetrahedrons form the finite element mesh and linear shape functions are used

Nb = 4. For quadratic shape functions Nb = 10. The shape functions obey

, (7)

, (8)

where xi and xj denote the positions of the local node points i and j of the element e,

respectively. To perform the time integration, we have to calculate the effective field on every

node point of the finite element mesh. However we cannot directly use the analytic formula

for the effective field, which follows form the negative functional derivative of the total Gibbs

energy (equation 10) as,

. (9)

Here A is the exchange constant, K1 is the magnetocrystalline anisotropy constant, a is the

unit vector parallel to the anisotropy axis, Hs is the magnetostatic stray field, and Hext is the

external applied field. The first term on the right side of equation (9) is the exchange field. Its

calculation needs the second derivative of the magnetic polarization. Numerically the second

derivatives can not be calculated directly using linear basis functions. In addition, the calcula-

tion of the stray field which follows from the gradient of a scalar potential is crucial. With lin-

ear basis functions the gradient of the potential, which is proportional to the stray field, is

only defined within an element but not on the node points. To overcome this problem we

start from the total Gibbs energy for a ferromagnetic particle [18]
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. (10)

The exchange energy, the anisotropy energy, the demagnetization energy and the Zeeman

energy contribute to the total energy. The second term is simple uniaxial anisotropy energy. It

would be no problem to replace it with any other form of anisotropy energy. No surface

anisotropy is assumed. We neglect the contributions to the total energy which arise from the

conversion of the true microscopic exchange and dipole interactions to the continuum form

as well as intrinsic surface anisotropy [18].

The total energy is an integral over the particle volume . In the following we consider a

discretization of the problem domain  into  finite elements .

. (11)

Thus the integral in equation (10) decomposes into a sum of integrals over finite elements 

. (12)

For the magnetic polarization J the expansion according to equation (6) is used. The k-th

component of the effective field on node i is approximated using the box scheme [19],

, (13)

where mi denotes the magnetic moment on the node point i. It follows from the integral 

, (14)

where Vi  , as shown in figure 1, is the surrounding the volume of the node i, such that

 and  for . (15)
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Usually, in a single phase magnetic material the spontaneous polarization, Js, is a constant

in space. However the spontaneous polarization is a function of space and is discontinuous at

grain boundaries if a magnet with different magnetic phases is modeled. In our model the

nodes of the finite elements are located at grain boundaries. Regions with different values of

the spontaneous polarization surround these points. Thus we assume an average magnetic

moment for these nodes as given by equation (14).

The derivative of the total energy is calculated in an element-by-element fashion. Firsr we

have to calculate for all local coefficients . Then the element level derivatives

are assembled to obtain , the derivative of the total energy with respect to the global

expansion coefficients. The assembling process can be formally written using the connectivity

matrix  which is defined as, 

. (16)

Using  the derivative of the total energy with respect to the global coefficients  fol-

lows from

. (17)

Let us first consider only the contribution of the exchange energy to the total energy, in

order to give an example for the calculations of the derivative of the total energy with respect
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derivative follows as

. (18)
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The derivative with respect to the local coefficient  in the second factor gives

(20)

which finally leads to

. (21)

Introducing the element matrix ,

, (22)

the derivative of the exchange energy can be written as,

. (23)

In a similar way one can calculate the Zeeman energy EH, stray field energy Es and anisot-

ropy energy EK. The derivatives are

, (24)

, and (25)

. (26)

The space discretization of equation (2) leads to a system of ordinary differential equa-
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the calculation is done element by element.   Using equation (23)-(26) we build the second

derivative of the total energy with respect to the local coefficients . For the exchange

energy and anisotropy energy follows

. (27)

. (28)

Here ak are the cartesian components of the unit vector parallel to the anisotropy axis. The

uniform external field does not contribute to the second derivative. The stray field is omitted,

in order to keep the Jacobian sparse. The assembling process from the local second deriva-

tives to the global derivatives of the total energy can be formally written as

. (29)

2.1  Calculation of the stray field

The stray field  is obtained from a boundary value problem,

 and (30)

To apply the boundary condition  at infinity, a hybrid finite element boundary ele-

ment method [20] is used. No finite elements are needed outside the magnetic particle to

solve the boundary value problem (30). This is the advantage of the hybrid FE/BE method.

For the solution of (30) with the hybrid FE/BE method one Poisson equation with Neumann

boundary conditions and one Laplace equation with Dirichlet boundary conditions have to

be solved. To obtain the boundary conditions a matrix vector product has to be performed.

We split the total magnetic potential u into two parts, u = u1 + u2. The potential u1 solves the

Poisson equation (30) inside the magnetic particles with Neumann boundary conditions at

the surface of the magnets and it is zero outside the magnets. The potential u2 solves the
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Laplace equation everywhere in space and shows a jump at the surfaces of the magnets. Thus

u2 is the potential from a dipole sheet at the surfaces of the magnet. After discretization the

integral operator may be expressed as a matrix vector product 

(31)

The storage requirement for the matrix B is the bottleneck of the method since  is a fully

populated  matrix. NS is the number of boundary nodes. Especially for thin films the

method loses efficiency since most of the nodes are located at the boundary. 

3 Time integration

We use the CVODE code [14-15] for solving the LLG equation. The relative performance

of the Adams method, the BDF method and the BDF method with preconditioning changes

depending on the microstructure, material parameters, and the finite element mesh. The

Adams method seems to be attractive because of the low cost per time step. In contrast to the

one-step methods (e.g. Runge-Kutta) multistep methods make use of the past values of the

solution. At each time step a non linear system of equations has to be solved. The Adams

method solves the nonlinear system with functional iteration and thus requires only the evalu-

ation of the right hand side of equation (2). However, if the problem is stiff the convergence

of the functional iterations is slow. For a stiff problem it is advisable to use an implicit method

such as BDF. The nonlinear system is solved using a Newton method. Normally only a few

Newton steps are required. Within CVODE the linear system for each Newton-step is solved

either with a direct solver or with a Krylov subspace method. Krylov subspace methods have

been explored in micromagnetics by Tsiantos et al. [13,16]. The solution is approximated iter-

atively by a linear combination of the basis vectors of the Krylov subspace. At each iteration

step one orthonormal basis vector is added which increases the subspace dimension by one.

If the Krylov subspace dimension is equal to the number of unknowns the exact solution is

found. For practical applications a very good approximation is obtained for a Krylov sub-

space dimension much smaller than the number of unknowns. The default value for the max-

imum Krylov subspace dimension in CVODE is 5. As discussed in the next section the

computation time drastically decreases when this value is increased to about 300. An addi-

tional parameter in the CVODE package is the maximum order of the time integration

u2 Bu1=

B

NS NS×
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method. Especially for small damping constants, we found that a maximum order, qumax = 2,

improves the stability of the solution.

The BDF method leads to the nonlinear system [21]

 (32)

which is solved by Newton iteration.  and  are constants which depend on the order

of the time integration method and on the previous time step size. Equation (32) is succes-

sively solved by adding corrections  to the solution vector.   is the solution of the linear

system,

, (33)

with

 and . (34)

Equation (33) is solved with a Krylov method. It starts with a guess  for , and cor-

rects it successively to get iterates ,  ... . After a few iterations a good aproximation for

 is found. In every iteration only the product  has to be calculated. So the large

matrix A has to be neither explicitly constructed nor stored. In micromagentics A is fully

populated owing to the long range magnetostatic interaction.  is approximated using

finite differences,

. (35)

However the number of Krylov iterations strongly depends on the matrix A. For some

matrices A the Krylov methods converge slowly. This problem can be overcome by precondi-

tioning. Instead of the system

 (36)

the equivalent system

 (37)

F yn( ) yn an– hβ0f tn yn,( )– 0= =

an β0

y∆ y∆

∂F yn 1–( )
∂y

------------------------ y∆ A y∆ F– yn 1–( )= =

A 1 hβ0J–= J
∂f
∂y
-----=

x0 y∆

x1 x2

y∆ Axi

A y∆

A yn 1–( )v
F yn 1– εv+( ) F yn 1–( )–

ε
------------------------------------------------------------≈

A y∆ b=

AP 1–( ) P y∆( ) A′x′ b= =
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is solved. The matrix P should be an approximation to A. Then  is close to the iden-

tity matrix and the system  can be solved very efficiently with only a few Krylov

iterations. The the matrix  cannot be calculated directly since generally the matrix A is

not explicitly constructed. To calculate the matrix vector product, , which is

needed in every Krylov iteration, the following procedure is applied. Instead of the calcula-

tion of s from

 , (38)

we multiply equation 38 by A-1 and calculate w from

 (39)

w is calculated by solving the linear system 

 (40)

with an efficient iterative solver, since the inversion of a matrix is very time consuming.

Once w has been calculated, s follows from equation (39) simply be the matrix vector product 

(41)

(42)

We found that the solution of equation (40) is the most time consuming part in our micro-

magnetic simulation. We tested different methods to solve equation (40) (see section 5). The

linear system of equations (40) is sparse. As the number of unkowns is large, the use of an

iterative method is more appropriate than solving (40) with a direct method. Among different

generalized minimum residual methods (GMRES), the Bi-Conjugate Gradient method was

found to be the most efficient one. For some problems it is important to apply a precondi-

tioner to the linear system  (equation 40) to achieve good convergence. A good choice is the

incomplete factorization technique RILU [22]. 

3.1  Error control

In the CVODE code the local truncation error ei is estimated. The tolerance parameters

reltol and the vector abstol, which can be defined for every solution component separately,

AP 1–

A′x′ b=

AP 1–

s:=AP 1– x

s AP 1– x=

A 1– s P 1– x =: w=

Pw x=

s Aw=

A 1 hβ0J–=
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can be used to control the error. The time step of the integration is determined so that the

error satisfies the inequality

. (43)

In micromagnetics a useful error indicator follows from the structure of the LLG equa-

tion. The LLG equation maintains the magnitudes of the magnetic polarization. However the

discretization of the LLG equation using the BDF formula violates this relation. For example

for the implicit Euler method with time step h (BDF method or Adams method of order one)

follows,

. (44)

If equation (44) is multiplied by  the right hand side vanishes. 

. (45)

Substituting  by  in equation (45) it follows,

. (46)

As a consequence  for i > 0. To guarantee that the norm of the magnetic

polarization does not drift away, we normalize the magnetic polarization on every node if on

at least one node the deviation becomes larger than the specified tolerance rentol. To deter-

mine the accuracy of an integration method we use the number of renormalization steps dur-

ing the simulation as well as the deviation norm of the spontaneous polarization,

, (47)

where  is the magnitude of the polarization vector on node i. 

ei
1

reltol ui abstoli +
------------------------------------------------ 

  2

i 1=

N

∑
N

---------------------------------------------------------------------- 1≤

Ji 1+ Ji–

h
---------------------- γ

1 α2+
---------------Ji 1+– Heff Ji 1+( )× α

1 α2+
--------------- γ

Js
-----Ji 1+ Ji 1+ Heff Ji 1+( )×( )×–=

Ji 1+

Ji 1+ Ji–

h
---------------------- 
  Ji 1+ 0=

JiJi 1+
1
2
--- Ji

2 Ji 1+
2 Ji Ji 1+–( )2–+( )

Ji 1+( )2 Ji( )2 Ji 1+ Ji–( )2+=

Ji 1+( )2 J0
2≠

DN 1
Js
----max J i Js–( )=

J i
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3.2  Storage requirements

The size of the workspace required for the scaled preconditioned GMRES iterative solver

for the linear system is

, (48)

where n = 3N is the number of unknowns,  lmax the maximum dimension of the Krylov

subspace and N the number of nodes of the finite element mesh. For our micromagnetic sim-

ulations the storage requirement of the GMRES solver does not dominate the total memory.

For example the simulation for a granular element (Section 5) with 3512 nodes and 2466

boundary nodes requires 48Mb for the storage of the  boundary matrix B (equation

31), where  is the number of nodal points on the surface. An increase of lmax from 5 to

300 increases the storage requirement for the GMRES solver from 0.2 Mb to 9.2 MB. How-

ever the CPU time decreases by one order of magnitude when lmax is changed from 5 to 300.

For thin samples where all nodes are located on the surface NS = N the storage requirements

of the B-matrix scales with . However, the Krylov subspace only scales with .  The sit-

uation slightly changes if the magnetic sample has almost the same lateral dimension in all

three directions in space. For a sphere, which is discretized with tetrahedrons inside and trian-

gles on the surface, the number of node points inside and the number of points on the sur-

face is  and , respectively. l is the ratio between the

radius of the sphere and the edge length of one tetrahedron. The storage requirement for the

B matrix is , so it scales with . However, the workspace needed for the Krylov

method only scales with . So even for the case where the boundary matrix is relatively

small it requires much more storage then the GMRES iterative solver.

4 µµµµMAG Problem # 4

We used the µMAG standard problem number 4 to compare the efficiency of different

time integration schemes. In the µMAG problem the reversal process of a permalloy film

with the dimensions x = 500 nm, y = 125 nm and z = 3 nm has to be calculated. We used

A = 1.2 x 10-11 J/m,  Js = 1 T and zero magnetocrystalline anisotropy. We focused our inves-

tigation on the reversal process when the field µ0H=-35.5 mT, µ0Hy=-6.3 mT, µ0Hz= 0.0 is

applied instantaneously to the initial S-state. The S-state is obtained after applying a saturating

field along the [1,1,1] direction which is slowly reduced to zero.  The mesh size of the finite

n lmax 5+( ) lmax lmax 4+( ) 1+ +

NS NS×

NS

N2 N

NV l3 16π 2⁄( )∼ NS l2 8π 3⁄( )∼

NS( )2 l4

l3
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element mesh is 5 nm, in the following calculations. The reversal process obtained from a

simulation with a mesh size of 3 nm is very similar. So we conclude that in our model a mesh

size of 5nm is sufficient to resolve the micromagnetic details. Figure 2 shows the time evolu-

tion of the y - component of the magnetic polarization. The time evolution significantly

depends on the initial state. A small difference in the initial state leads to a different time evo-

lution. Thus the initial equilibrium state has to be calculated with a very strict stopping crite-

rion. For the solid line in Figure 2 the magnetization configuration of the S-state was

calculated using a stopping criterion  

. (49)

on every node.  This quantity is proportional to the torque. For the dashed line in Figure 2

. Starting from the accurate initial state the reversal process is calculated with differ-

ent options and methods of the CVODE package. In the following simulation the accuracy of

the time integration was defined with the abstol parameter of CVODE. We set abstol = 10-3

and reltol = 0. To be able to compare the accuracy of the different methods we use the num-

ber of renormalization steps which were required to keep DN < rentol. This number of

renormalization steps, nrn, serves as an error criterion. The smaller nrn the more accurate is

the time integration method. Figure 3 shows the CPU time as a function of the simulation

time. The calculations are performed on a Digital EV6 workstation (523 MHz).   The CPU

Table 1: Summary of statistical data for different time integration schemes after 3 ns
of simulated time. (Adams) Adams method qumax = 15. (BDF 1) BDF-method
with maximum integration order qumax = 3, Krylov Subspace dimension lmax = 400.
(BDF 2) BDF-method with qumax = 2 and lmax = 400. (BDF 3) BDF-method with
preconditioning, qumax = 2 and lmax = 400. (BDF 4) BDF with qumax = 2 and
lmax = 15.

Adams BDF 1 BDF 2 BDF 3 BDF 4

Total CPU time (s) 3.43 x 104 9.9 x 104 2.33 x 104 9.7 x 103 2.37 x 104

average CPU per time step (s) 2.37 4.58 19.1 7.87 11.1
average CPU for equation (40) 
per time step (s)

- - - 3.1 -

average number of iteration to 
solve (eq. 40)

- - - 7.1 -

re
1
Js
---- ∆J

∆t
------- 10 6–<=

re 10 3–<
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time of the Adams method as a function of the simulation time is linear because the time step

is constant (0.21 ps) during the whole simulation. The small time step provides a high accu-

racy. The number of renormalization steps is nrn = 1. Besides the Adams method the perfor-

mance of the BDF method with different options is investigated. For the BDF method the

default value for the maximum integration order, qumax = 5, leads to a very bad performance

as shown in figure 3 (BDF: qumax= 5). A restriction of the maximum integration order to 2

drastically improves the performance (Figure 3 BDF 2). Although in other micromagnetic

simulations the maximum dimension of the Krylov subspace dimension lmax was found to be

a very crucial parameter the default value, lmax = 5, leads to the same CPU consumption as

lmax = 400. For lmax = 15 the average time step is smaller than for lmax = 400. Figure 4 shows

a significant difference in the time step for the simulation with lmax = 15 and lmax = 400 at

the end of the simulation. If the maximum number of Krylov iterations is restricted to

lmax = 15 the linear system equation  (33) cannot be solved with the desired accuracy. As a

consequence the time step is reduced to obey equation (43). However the overall CPU time

consumption for lmax = 15 is appoximately the same as for lmax = 400. In this example a large

time steps with a large cost per time step (lmax = 400) gives the same amount of work as small

time steps with a low cost per time step (lmax = 5). The solid line in figure 3 shows that the

BDF method with proper preconditioning yields the best performance during the whole sim-

ulation. Preconditioning speeds up the simulations by factor 2.5 compared to BDF without

preconditiong with the same parameters. A very time consuming part for preconditioning is

the solution of the linear system (equation 40). It requires almost one half of the total CPU

average number of Krylov sub-
space iterations per Newton step

- 1.3 11.26 1.47 9.88

average time step (ps) 0.21 0.14 2.47 2.48 2.03
number of function evaluations 30 774 88 963 19 243 3 134 19 798
number of renormalization 
steps nrn (error indicator)

1 115 9 10 7

Table 1: Summary of statistical data for different time integration schemes after 3 ns
of simulated time. (Adams) Adams method qumax = 15. (BDF 1) BDF-method
with maximum integration order qumax = 3, Krylov Subspace dimension lmax = 400.
(BDF 2) BDF-method with qumax = 2 and lmax = 400. (BDF 3) BDF-method with
preconditioning, qumax = 2 and lmax = 400. (BDF 4) BDF with qumax = 2 and
lmax = 15.

Adams BDF 1 BDF 2 BDF 3 BDF 4
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time. Figure 5 shows that preconditioning drastically decreases the number of Krylov itera-

tions which a required to solve the linear system (equation 36). Without preconditioning the

number of linear iterations increases with time because the time step becomes larger when

the system gets closer to equilibrium (figure 5). For a large time step the resulting linear sys-

tem requires more linear iteration for its solution. For t > 3 ns the number of linear iterations

decreases from more than 100 without preconditioning to 2 with a preconditioner. Fewer lin-

ear iteration requires fewer number of function evaluations. Thus preconditioning reduces the

number of function evaluations, in this example by a factor of 6.5. The BDF method with

lmax = 15, lmax = 400 and with preconditioning has comparable accuracy. The number of

renormalization steps, which serves as an error indicator, are 9, 7 and 10 for lmax = 15,

lmax = 400 and lmax = 400 with preconditioning, respectively. Table 1 summarizes the key

performance parameters of the different integration methods. 

5 Granular media

As a second test case we have calculated the hysteresis loop for a Co element with a rough

surface.  The surface can be seen in Figure 6. To create a rough surface the element was built

up of 8 nm wide columnar grains. The  basal planes of the grains are irregular, constructed

from voronoi cells.  These grains lead to edge irregularities of the same size. Each grain con-

sists in average of 26 finite elements. The grain structure leads to an inhomogeneous finite

element grid. Since the time step for explicit time integration scheme has to be proportional

to h², where h is the size of the spatial grid, a inhomogeneous grid causes very small time

steps. The investigated element is 400 nm long, 100 nm wide and 25 nm thick. No uniaxial

anisotropy is assumed. The sponateneous polarization Js = 1.76 T and the exchange constant

A = 1.3 x 10-11 J/m. The damping constant α was set to 0.1. Figure 6 shows magnetization

states during the demagnetizing process. The angle between the external field the long axis of

the Co element is 1°. The letters in figure 6 identify states marked on the hysteresis loop in

figure 7. The nucleation of reversed domains starts at edge irregularities. 

For the comparison of differnt time integration schems we simulated the switching pro-

cess under the action of an external field. The external field 1° off the easy axis and a strength

of 100 kA/m is applied instantaneously to the remanent state. After 0.76 ns the normalized

magnetization parallel to the external field direction becomes smaller than -0.99. Then we

regard the particle to be switched. 
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Figure 8 shows the efficiency of different time integration schemes. The CPU time is plot-

ted as a function of the simulated time. It clearly shows that the Adams method (A) is not

suitable to solve the LLG equation for samples with granular structure. In all simulations with

the BDF method the maximum integration order, qumax = 2, was used. The BDF method

shows a very bad performance if the dimension of the Krylov subspace is restricted (lmax = 5

or lmax = 15 ). The maximum dimension of the Krylov subspace restricts the number of iter-

ations to solve the linear system (equation 36), which has to be solved in every Newton step.

The linear iteration stops if the desired accuracy or lmax is reached. If lmax is large enough, so

that the number of iterations does not reach lmax, the ratio nli/nni (nli = number of linear

iterations, nni = number of nonlinear iterations) gives the average number of linear iterations

per Newton step. From Table 2 it follows that the average number of linear iterations for the

BDF method without preconditioning is 64. Figure 8 shows that the efficiency of the time

integration scheme increases with increasing lmax. With higher dimension of the Krylov sub-

space, the linear system can be solved more accurately which in turn enables a larger time

step. The maximum number of Krylov iterations is 162. So a further increase of lmax > 162

has no influence on the simulation. It is interesting to note that the CPU time decreases when

the absolute tolerance of the time integration scheme abstol is enhanced from 10-4 (curve D in

fig. 8) to 10-5 (E). A smaller tolerance keeps the norm of the magnetization vector constant

for a longer time period. Thus less renormalization steps which also require to restart the

time integration algorithm are required. Restarting the BDF method requires some precom-

putation steps like factorizing the matrices for the linear systems. In addition the initial time

step is small. 

The curve marked with (F) in figure 8 shows that the CPU time is drastically decreased if

preconditioning for the time integration is used. For preconditioning the solution of equation

(40) is the most time consuming part. We have tested different solvers for the solution of

equation (40). The Methods of Orthomin, GCR and MinRes which belong to the family of non-

symmetric Krylov solvers were found to be less efficient than the Bi-Conjugate Gradient

method. We emphasize that also the Bi-Conjugate Gradient method has to be combined with

a preconditioner in order to speed up the convergence rate. We apply the incomplete factor-

ization technique RILU. The fill-in entries during the incomplete factorization process are

multiplied by a factor ω before adding them to the main diagonal. The reduction of the

parameter ω from the all-round choice of ω = 0.95 to ω = 0 is sometimes necessary to avoid

convergence problems. For the investigated sample RILU preconditioner was absolutely nec-
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essary to achieve convergence. Although we have tried different options of the linear solver it

is still the most time consuming part in the simulations. The solution of the linear system

needs almost 50% of the total CPU time. Figure 9 shows the deviation norm DN (equation

47) as a function of the simulated time for a calculation with and without preconditioning. In

both calculations lmax is 400. A large deviation norm indicates a large error. Although for

both simulation the same values for the error tolerances, abstol = 10-4 and reltol = 0, were

used, the accuracy is much better if preconditioning is performed. Table 2 summarizes the

statistical data after 0.76 ns of simulated time. 

6 Conclusions

Both, for the soft magnetic thin film with perfect microstructure and a granular media

with surface roughness the BDF method is faster than the Adams method. In both cases pre-

conditioning speeds up the computational time. The solution of the linear system which has

to be solved for preconditioning is very time consuming. Approximately 50% of the total

CPU time is spent to solve the linear system. Nevertheless the overall speed up as compared

to the Adams method is three orders of magnitude. The accuracy is higher with precondition-

ing.

 

Table 2: Compares statistical data for the BDF method with and without
preconditioning after 0.76 ns of simulated time. The maximum integration order qumax
is 2. The Krylov subspace dimension lmax = 400 in both calculations.

BDF 400 BDF Precond

Total CPU time (s) 27.8 x 104 1.48 x 104

average CPU per timestep (s) 69.4 9.69
average CPU for equation (40) 
per timestep (s)

- 4.75

average number of iteration 
within to solve (40)

- 8.4

average number of Krylov sub-
space iterations per Newton step

64.3 1.18

average timestep (ps) 0.18 0.50
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number of function evaluations 451 937 3 475
number of renormalization 
steps nrn (error indicator)

216 6

Table 2: Compares statistical data for the BDF method with and without
preconditioning after 0.76 ns of simulated time. The maximum integration order qumax
is 2. The Krylov subspace dimension lmax = 400 in both calculations.

BDF 400 BDF Precond
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Figures
             .      .          .  .   .  

Figure 1: The volume Vi surrounding the node i shown in a 2 dimensional example. 

Vi



23

Figure 2: Time evolution of the y-component of the magnetic polarization of the µMAG
Problem # 4. The initial state for the simulation was calculated with a stopping criterion
re=10-6 (solid line) and re=10-3 (dashed line) 
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Figure 3: CPU time (Digital EV6 - 523 MHz) versus the simulation time for different
time integration schemes for the µMAG Problem # 4. (Adams) Adams method; (BDF1)
BDF-method with maximum integration order qumax = 3, Krylov Subspace dimension
lmax=400; (BDF2) BDF with qumax = 2 and lmax = 400; (BDF3) BDF-method with
preconditioning, lmax = 400, qumax = 2.
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Figure 4: Comparison of  the time step as a function of the simulated time of two
simulations with a maximum Krylov subspace dimension lmax = 15 and lmax = 400. The
maximum order of the time integration scheme was qumax = 2 in both simulations. 
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Figure 5: The number of Krylov iterations per time step for the BDF method with and
without preconditioning. The dimension of the Krylov subspace lmax = 400. The
maximum integration order qumax = 2. 
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Figure 6: Equilibrium states during the demagnetization process for a Co-grain with
granular structure. The film thickness is 25 nm. The letters identify the states marked on
the demagnetization curve in figure 7. 
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Figure 7: Hysteresis loop for the granular Co-particle. The field step is 4 kA/m. 
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Figure 8: CPU time (Digital EV6 - 523 MHz) versus the simulated time for different time
integration schemes for a Co element with a grain structure. (A) Adams method (B-D)
BDF method without preconditioning for different dimension of the Krylov subspace.
(B) Krylov subspace dimension lmax  = 5, (C) lmax  = 15, (D) lmax  = 400,  (E) lmax  = 400
and high accuracy (abstol = 10-5). (F) BDF-method with preconditioning, lmax  = 15.
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Figure 9: The deviation of the magnitude of the magnetic polarization vector from Js
indicates the quality of the time integration method. Comparison of the deviation norm
DN for the BDF method with and without preconditioning. The maximum order of the
time integration was qumax=2. 


