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Abstract 

 

 Langevin micromagnetics treats finite temperature effects by adding a thermal fluctuation 

field, Hth, to the effective field. If combined with the finite element method a large system of 

stochastic differential equations (SDEs) has to be solved. In this paper a new semi-implicit 

method is used to treat the system of SDEs on magnetic sensor elements. Fluctuations are of 

immense importance in recording industry because they lead to instabilities and also increase 

the noise. The results show that according to the model conclusions the fluctuations of the 

magnetization increase slightly with the temperature.  
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Introduction 

 

Magnetic sensors are very important for a large number of applications, such as magnetic 

recording industry, automotive applications, etc. Various techniques have been employed for 

sensing, such as linear variable differential transformer (LVDT) that is well-known for its 

applications in displacement measurement [1]. More specifically, giant magnetoresistance 

(GMR) sensors overcome the weaknesses of conventional magnetoresistors and Hall sensors, 

due to their advantage to be less sensitive to air gap deviations [2]. Micromagnetics has been 

used to model magnetic phenomena in small elements of sub-micron size. Moreover, it 

provides a powerful tool to model the magnetic behavior of read sensors in magnetic recording 

systems [3].  

 A magnetic material of permalloy type with size 150x100x5 nm has been used for the 

micromagnetic simulations. The exchange constant A was set to 1.3x10-11 J/m, the crystalline 

anisotropy K was 5.0x102 J/m3, and the saturation polarization Js was 1T. The simulations ran 

for  3 ns. The uniaxial anisotropy axis was parallel to the long axis of the element. 

 The thermal simulations started from an s-state that has been obtained using a deterministic 

micromagnetic model. Then we applied an external field of 0.1T parallel to the magnetization 

(x direction) to imitate the presence of the permanent magnet [3]. 

 

 

Method 

 

 The theoretical treatment of thermally activated magnetization reversal for particles with an 

extension greater than the exchange length requires solving the Langevin equation numerically. 



The Langevin equation follows from the Gilbert equation of motion by adding a random 

thermal fluctuation field to the effective magnetic field:  

 

(1).                                           

 The first term on the right hand side of equation (1) accounts for the gyromagnetic 

precession of the magnetic polarization J, the second term arises from viscous damping.  After 

space discretization using the finite element method an equation similar to  (1)  has to be 

fulfill ed at each node of the finite element mesh. 

The term γ is the gyromagnetic ratio, and α is the Gilbert damping constant. The thermal field 

is assumed to be a Gaussian random process with the following statistical properties: 
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 The average of the thermal field taken over different realizations vanishes in each direction 

i in space. The thermal field is uncorrelated in time and uncorrelated at different node points 

(k,l) of the finite element mesh. The strength of the thermal fluctuations follows from the 

fluctuation-dissipation theorem: 
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where Vi is the volume surrounding the node i of the finite element mesh, and kB is the 

Boltzman constant. 

 The general form of the Langevin equation can be written as follows [4]: 
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where, dW are Gaussian random numbers with mean zero and standard deviation one, and 

B[J(ri,t)] is given by, 
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We use a semi-implicit method to solve (4). The right hand side of (4) is evaluated in the 

middle of time interval. The magnetization in the middle of the time interval is 

J  = J(t+∆t/2)  = (J(t) + J(t+∆t))/2.                                           (6) 

 If j counts the timestep then, 

tj+1 = tj + ∆t.                                                              (7)  

We introduce a new index n for the functional iteration to solve the nonlinear equation at each 

time step. The n+1 iteration is defined as, 
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+
= J(tj) + B[

n
J ] ∆t + ε  B[

n
J ] ∆t.                                      (8) 

Here we evaluate B at 
n

J . We assume 
0

J = J(tj). After a few iterations of eq. 8 we evaluate 

J(tj+1), the magnetic polarization at t= t+∆t, as 

J(tj+1) = 2 J  - J(tj).                                                     (9) 

The last equation follows from equation (6). Finally, we solve the non linear equation by 

functional iteration. 

 

  

Results 

 

A small field is applied at an angle of 100 to the long axis of the element. This field is gradually 

reduced and the equilibrium state is calculated for each field at T = 0 K. This procedure gives 

the s-state, which has been used as initial state for the thermal simulations. Fig. 1 shows the 

magnetization configuration of the s-state at T = 0 K. 
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Figure 1:  The initial magnetisation distribution used for the stochastic calculations (s-state, 

T=0), and the co-ordinate system. 

  

 In order to mimic the thermal fluctuations in the free layer of a GMR sensor we assume an 

external field of µ0 Hext = 0.1T parallel to the long axis of the element. In realistic applications 

this field will result from permanent magnets that are used to stabilize the magnetization of the 

sensor elements. At time t=0 we increase the temperature to T=350K and T=500K. 

                                           

Temperature Fluctuations 

350 0.0790 

500 0.0912 

 

Table 1: The fluctuations of the magnetization for the two temperatures. 

 

 

 Table 1 gives δMx for 350K and 500K. The thermal noise increases slightly with 

increasing temperature. 



 

Figure 2:  The x-component of the magnetization (T=350 K / 500 K). 

 

 

Figure 3:  The magnetisation distribution after 0.4ns (T=500 K). 

 

 Fig. 2 shows the time evolution of  
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which is the spatial average of the x-component of the magnetic polarization. Mx oscill ates in 

time with a frequency of about 15GHz. In order to quantify the thermal fluctuations as a 

function of temperature we calculate  



2
x

M - 2
x

M   
x

M ><><=δ ,                                            (12) 

where < > denotes the time average. Since the nature of the oscillations of Mx changes at time 

t=0.8 we build the time average only for time t > 0.8. The value of δMx can be assumed to be 

proportional to the GMR response of a sensor element. 

 

 

Figure 4:  The magnetisation distribution after 0.6ns (T=500 K). 

 

 

 

Figure 5:  The magnetisation distribution after 1ns (T=500 K). 

 



 

Figure 6:  The magnetisation distribution after 1.7ns (T=500 K). 

 

 Fig. 3 to Fig. 6 show snapshots of the magnetization distributions for T=500K for 

increasing simulation time. 

 

 

Conclusions 

 

We proposed a new method to treat thermal noise in thin film elements. The semi-implicit time 

integration scheme is very robust and allows time steps up to ∆t=60ps. The thermal effects 

changes lead to fluctuations of the average magnetization of the element of about 1%.  
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