
   
Abstract--In this paper an investigation of the stiffness of 
granular media of CoCrPtTa structure (type a) and 
micromagnetic standard problem #4 has been done. 
Moreover, an investigation of the effect of the maximum 
dimension of the Krylov subspace projection methods, within 
the Ordinary Differential Equations (ODEs) context, on the 
speed of micromagnetic simulations on granular media of Co 
structure (type b) has been done. The stiffness of the 
problems has been investigated using two different solvers, a 
non-stiff (Adams) and a stiff one (backward differentiation 
formulae, BDF) for the solution of the large system of ODEs. 
The results show that granular media (type a) micromagnetic 
simulations are stiff, whereas µ� MAG standard problem #4 is 
not.  Furthermore, it has been found that increasing the 
maximum dimension of the Krylov subspace to 20 (default 
value =5) a considerable increase to the speed of the granular 
media simulations occurs in the order of approximately 90%.  
 
Index terms-- Micromagnetics, ordinary differential equations, 
stiffness, Landau-Lifshitz-Gilbert equation, Krylov methods, 
granular media. 
 

I. INTRODUCTION 

 
The basic structural units of modern magnetic materials 
are nanocrystall ine grains [1-3]. Moreover, as the magnetic 
devices are miniaturized by the magnetic recording 
industry understanding of the connection between the 
structural properties and the domain formation is of 
immense importance. Micromagnetic modelling is an 
effective tool to analyze the domain configurations during 
magnetization reversal. However, micromagnetic 
calculations are time consuming and efficient ways to 
speed up the simulations have to be employed. In this 
paper micromagnetic simulations for granular media, as 
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well as on µMAG standard problem #4 have been run in 
order to investigate the stiffness of the simulations. 
Moreover, the effect of the maximum dimension of the 
Krylov subspace on the speed of the simulations on 
granular media (type b) has been investigated in order to 
define an optimum value. 

 
 

II. MODEL AND SIMULATION METHOD 

 
In micromagnetics the magnetic polarization is 

assumed to be a continuous function of space. The time 
evolution of the magnetization follows the Gilbert equation 
of motion.  
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which describes the physical path of the magnetic 
polarization J towards equilibrium. The effective field Heff 
is the negative functional derivative of the total magnetic 
Gibb's free energy, which can be expressed as the sum of 
the exchange energy, the magneto-crystall ine anisotropy 
energy, the magnetostatic energy, and the Zeeman energy 
[4]. γ0 is the gyromagnetic ratio of the free electron spin 
and α is the damping constant. To solve the Gilbert 
equation numericall y the magnetic particle is divided into 
finite elements. A hybrid finite element boundary element 
method [5], is used to calculate the scalar potential u on 
every node point of the finite element mesh. The 
demagnetizing field, which contributes to the effective 
field, is the negative derivative of the scalar potential u. 

The effective field 
i
effH at the node point i of an irregular 

finite element mesh can be approximated using the box 
scheme 
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where Vi is the volume of the surrounding node i, such that 

VV
i

i =∑ , and 0=∩ ji VV for i≠j, (3) 

 
The discretization of the Gilbert equation leads to an 
ordinary differential equation for every node for each 
component. In the case of a non-stiff problem it is 
advisable to use an appropriate method, such as Adams [6], 
whereas in stiff problems a backward differentiation 
formula (BDF) method could be an option for the time 
integration. BDF method is implicit, so at each time step a 
non-linear algebraic system must be solved. For the 
solution of the non-linear system a method, such as 
Newton, has to be used which leads usually to a very large 
system of linear equations. In this paper the latter is solved 
using the scaled preconditioned incomplete generalised 
minimum residual method (SPIGMR) [7], based on 
GMRES (generalized minimum residual method) proposed 
by Youcef Saad [8]. SPIGMR belongs to the family of 
Krylov subspace methods, which are iterative methods for 
solving systems of linear equations. SPIGMR has been 
explored in micromagnetics by Vassilios D. Tsiantos et al 
[9,10], and also used by Bo Yang and Donald Fredkin [11]. 
 
 

III. STIFFNESS  

The stiffness of the problems has been investigated solving 
the system of ordinary differential equations with two 
different solvers. A non-stiff method (Adams) and a stiff 
one (backward differentiation formulae, BDF) have been 
used to measure the stiffness of the problem. For the latter 
the ratio of the total number of time steps (nst) taken by the 
two solvers, that is nst(Adams)/nst(BDF), has been used. 
Note that the simulation time has to be the same in order to 
have a fair comparison. The abovementioned method has 
been proposed to approximate numerically the stiffness of a 
system of ordinary differential equations (ODEs) in 
micromagnetics by Vassilios Tsiantos and James Miles 
[12]. Another factor that has to be considered is the cost of 
each method per time step. This cost per time step is 
important in cases that the ratio nst(Adams)/nst(BDF) is 
larger than 1. If the ratio of time steps is smaller than 1 
then the case is nonstiff. For the Adams the main cost per 
time step is the function evaluation. However, for the case 
of BDF there is some extra cost for the linear algebra 
involved. This extra cost is due to linear and nonlinear 
iterations. To solve the nonlinear equation arisen using 
BDF method a Newton-like scheme can be used which 
leads to a large system of linear equations. The linear 
system is in general nonsymmetric, so to solve it we use 

GMRES method. GMRES has been reported to work better 
with some kind of preconditioning [7]. In general, the 
preconditioned case gives faster results in terms of the 
nonlinear and linear iterations. However, the 
preconditioned method roughly doubles the average cost 
per nonlinear iteration because it computes and processes 
the preconditioner [7]. In this paper the unpreconditioned 
SPIGMR method has been considered [7]. Finally, the 
ultimate measure of stiffness is the total CPU time that is 
needed to solve the problem with the Adams and the BDF 
method.  

 
 
 
IIIA. µMAG problem #4 
 
The magnetic material defined by µMAG standard 
problem no. #4 is a rectangle NiFe film, with thickness 
t=3nm, width d=500nm, and length L=125nm. The initial 
state is an equilibrium s-state. The s-state is obtained after 
applying and slowly reducing a saturating field along the 
[1,1,1] direction to zero. Standard problem no. #4 is 
focused on the dynamic aspects of micromagnetic 
computations [13]. The problem has been studied using a 
3D-finite element simulation based on the solution of the 
Gilbert equation. The problem runs for two different 
applied fields, one at 170 degrees (field 1) and the other at 
190 degrees (field 2) counterclockwise from the positive x 
axis. 
 
The total number of nodes for the finite element analysis is 
5252, so the total number of equations is 15756. The ratio 
of the total number of time steps taken by the two solvers, 
that is nst(Adams)/nst(BDF), is 0.784 for field 1 and 0.614 
for field 2, which means that the non-stiff method (Adams) 
uses larger time steps than the stiff method (BDF) and 
consequently the systems are not stiff. The total number of 
the time steps taken by each method for field 1 is 11473 
(Adams) and 14628 (BDF). For field 2 we have that 
nst(Adams)=11342 and nst(BDF)=18479. The simulation 
time considered for field 1 is 2.15ns and for field 2 is 
2.23ns. The average time step for the Adams method was 
0.2 ps for both fields.  
 
µMAG problem no. #4 can be misleading with regards to 
its stiffness because the Adams method takes too many 
time steps. Thus, it can be thought as a stiff case if it will 
not be compared to a stiff method. The possible 
explanation for the large number of time steps is the low 
value of the damping constant used, α=0.02. The low value 
of α causes the magnetization to move around the effective 
field so the time integrator needs very small time steps to 
follow the path of the magnetization. For the ODE solver 
we used mixed error criterion with absolute and relative 
tolerance equal to 10-4. Moreover, after 2.42 ns for field 1 
and 2.23 ns for field 2 the amplitude of the oscillations of 



the magnetization obtains the requested numerical 
accuracy. 
 
 
IIIB. CoCrPtTa granular media 
 

Micromagnetic simulations for granular media (type b) 
have been run in order to examine the stiffness of the 
systems. The number of nodes used in the finite element 
method was 494, 946, 1681, 4426, and 12882. The ratio of 
the total number of time steps taken by the Adams and the 
BDF method with the default value of the maximum 
dimension of Krylov subspace, lmax=5, that is 
nst(Adams)/nst(BDF), is 13.19, 16.56, 18.06, 23.24, and 
31.80, for the systems with 494, 946, 1681, 4426, and 
12882 nodes, respectively. These ratios mean that the 
systems are stiff. However, the cost of Adams and BDF 
methods is different and this should be taken into account. 
So, the ultimate measure is the CPU time run with the two 
solvers for the same simulation time. Table 1 presents the 
CPU time for Adams and BDF for the given simulation 
time (in nsec).  
 

 
Table 1.  Total CPU times for the same simulation time. 

 
 

Nodes BDF Adams Sim. Times 
494 321.0167 1083.1152 0.14580 
946 1159.8037 4664.4670 0.17128 
1681 1823.4912 7935.7000 0.13613 
4426 7469.1875 39947.4000 0.17715 

12882 59294.2890 171977.0000 0.30975 
 
 

The results show that BDF method is approximately three 
times faster than the Adams method and this means that 
the systems are stiff. So, BDF is a better option for the 
solution of the large system of ODEs than Adams. 
 
 
 

IV. EFFECT OF MAXIMUM DIMENSION OF KRYLOV 

SUBSPACE  ON CO  GRANULAR  MEDIA 

 
The Co granular media material (type a) is uniformly 
magnetised and perpendicular to the plane of the film. The 
geometry of the sample can be shown in Fig. 1. This is a 
test case used for the calculation of the effect of the 
maximum dimension of the Krylov subspace on the 
micromagnetic simulations of Co granular media. So, the 
magnetisation arrangement at zero field was of our 
interest. Due to random in plane anisotropy an 

inhomogeneous magnetisation distribution has been 
expected.  
 
The intrinsic parameters of the Co nano-particles used for 
the simulations were, crystalline anisotropy K1 = 4.5x106 
J/m3, saturation magnetisation Js = 1.76 T, and exchange 
constant A = 1.3x 10-11 J/m. The damping constant used 
was α=0.1, the error criterion was the mixed one and the 
tolerance 10-5.  
 
Table 2 shows the CPU times and the total number of time 
steps taken by BDF for simulation time approximately 
3.185 ns. The values of maximum dimension of the Krylov 
subspace, lmax, were 5 (default value), 10 and 20. The gain 
in CPU time is 62.09% for lmax=10, and 83.5% for lmax=20. 
With regards to the total number of time steps for lmax=10 
we have 82.96% less time steps, and for lmax=20 we have 
91.96% less. Thus, we can see that we get considerable 
speed up with increasing the value of lmax. 
 
 
 

Table 2.  Total CPU times for the same simulation time, 
for different value of maximum dimension of the Krylov 

subspace, lmax. 
 

 
lmax CPU Time nst Sim. Times 
5 3.473618e5 37082 3.184953 
10 9.695233e4 6319 3.187996 
20 5.739658e4 2984 3.184879 

 
 

 

 
 

Fig. 1.  Plot of the geometry of the sample. 
 

 
 



 
 
 

Fig. 2.  The magnetisation distribution of the sample 
(lmax=10). 

 
 
 

 
 

Fig. 3.  The magnetisation distribution of the sample 
(lmax=10). 

 
 
 
Figures 2 and 3 show the magnetization distribution at two 
different points of the simulation. 
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