Micromagnetic Simulation of Domain Wall Pinning and Domain Wall Motion

<u>W Scholz</u>, H Forster, J Fidler, T Schrefl Vienna University of Technology

Outline

Micromagnetics

Finite Element Approach

- divide particles into finite elements
 ⇒ triangles, tetrahedrons
- expand \boldsymbol{J} with basis function $\boldsymbol{\phi}$

$$\vec{J}(\vec{x}) = \sum_{i=1}^{nodes} \vec{J}_i \varphi_i(\vec{x})$$

• energy as a function of $\mathbf{J}_1, \mathbf{J}_1 \dots \mathbf{J}_N$

$$E(\vec{J}_1, \vec{J}_2, \dots, \vec{J}_N)$$

$$\vec{H}_{k} = -\frac{1}{V_{k}} \frac{\partial E(\vec{J}_{1}, \vec{J}_{2}, \dots, \vec{J}_{N})}{\partial \vec{J}_{k}}$$

- \Rightarrow effective field on irregular grids
- ⇒ rigid magnetic moment at the **nodes**

Magnetostatic Field Calculation

- magnetic scalar potential $\mathbf{H} = -\nabla U$
- solve Gilbert equation simultaneously with
 - \Rightarrow Poisson equation (inside)
 - \Rightarrow Laplace equation (outside)

boundary element method (BEM)

finite element method (FEM)

BEM leads to a fully populated $N \times N$ matrix

- \Rightarrow N ... number of nodes at the surface
- \Rightarrow matrix compression using wavelets

Pinning Controlled SmCo Magnets

Characterization of SmCo permanent magnets by transmission electron microscopy

Microstructure

- Composition
- Heat treatment
- Additives

influence

- Precipitation structure
- Lamella phase
- Cell size

 Lorentz image of two magnetic domains

Micromagnetic Model

- Finite element mesh: 15833 nodes 84749 tetrahedral elements 7056 surface elements
- Resolution of the mesh: e/10 = D/25for D = 125 nm: 5 nm $\delta(Sm_2Co_{17}) = 5$ nm

Attractive Pinning

- Cells (Sm₂Co₁₇): Polarization: $J_s = 1.32 \text{ T}$ Anisotropy: $K_1 = 5 \text{ MJ/m}^3$ Exchange: A = 14 pJ/m
- Intercellular phase: Polarization: $J_s = 0.8 \text{ T}$ Anisotropy: $K_1 = 1.2 \text{ MJ/m}^3$ Exchange: A = 14 pJ/m

magnet.atp.tuwien.ac.at

Repulsive Pinning

- Cells: *D* = 125 nm
- Intercellular phase: Thickness: t = 10 nmAnisotropy: $K_1 = 9 \text{ MJ/m}^3$

Domain wall depinning

Pinning Fields

 Linear behaviour in the regime of repulsive pinning in agreement with a simple analytical 1D-model by Kronmüller (IEEE Trans. Magn. MAG-20 (1984) 1569):

$$H_c^{\max} = \alpha(K_1^{phase} - K_1^{cells}) / M_s^{cells}$$

Variation of the Phase Thickness

- Cells (Sm_2Co_{17}) : K₁ = 5 MJ/ m³
- Intercellular phase

Attractive pinning: $K_1=1.2 \text{ MJ/m}^3$

Repulsive pinning: K₁=9.0 MJ/m³

Domain Wall Motion

magnet.atp.tuwien.ac.at

Thick Intercellular Phases

- Reversal of the whole intercellular phase
- Nucleation field of the cells determines $\rm H_{\rm c}$

Domain Wall Structure

- d ≤ 20 nm
- domain wall moves slower
- velocity decreases with decreasing damping

- d ≥ 20 nm
- domain wall moves faster
- velocity increases with decreasing damping

Influence of Damping

transverse wall

vortex wall

Domain Wall Motion

magnet.atp.tuwien.ac.at

Summary

Domain Wall Pinning

- Different pinning mechanisms depending on the composition
- Repulsive pinning: linear dependence of the pinning field on anisotropy

Domain Wall Motion

- Different wall configurations depending on the wire thickness
- high domain wall velocity
 - high damping in thin wires (transverse wall)
 - low damping in thick wires (vortex wall)

Acknowledgements

Austrian Science Fund FWF

Y 132 – PHY: Advanced numerical micromagnetics

HITEMAG project

GRD1-1999-11125: Novel Permanent Magnets for High Temperature Applications