Transition from single-domain to vortex state in soft magnetic cylindrical nanodots

<u>W. Scholz</u>^{1,2}, K. Yu. Guslienko², V. Novosad³, D. Suess¹, T. Schrefl¹, **R. W. Chantrell² and J. Fidler**¹ ¹Vienna Univ. of Technology werner.scholz@tuwien.ac.at http://magnet.atp.tuwien.ac.at/scholz/ ²Seagate Research ³Argonne National Lab. Aug. 15th, 2002

Outline

- Introduction
- Analytical and numerical models
- Static properties
 - Magnetization distribution
 - Energy
 - Hysteresis
 - Surface and volume charges
 - Phase diagram
- Summary

Introduction

1 µm

Shinjo et al., Magnetic Vortex Core Observation in Circular Dots of Permalloy, Science 289 (2000) 930 Permalloy ($Ni_{80}Fe_{20}$) nanodots

- Saturation magnetization: $M_{\rm s} = 8.10^5 \text{ A/m} = 8.10^2 \text{ G}$ $J_{\rm s} \approx 1 \text{ T}$
- Exchange constant:
 A = 13.10⁻¹² J/m = 1.3.10⁻⁶ erg/cm
- Anisotropy has been neglected
- Radius of 100 nm, thickness of 20 nm

vortex state

Micromagnetics

- Effective field H_{eff} :
 - exchange
 - anisotropy
 - magnetostatic
 - external field
- Find energy minimums by integration of the Gilbert equation of motion or direct energy minimization

Rigid vortex model

• Usov ansatz

N.A. Usov, S. E. Peschany, Magnetization curling in a fine cylindrical particle, JMMM 118 (1993) L290-L294.

Magnetization outside the core (r > a)

$$M_{x} = -\sin\varphi$$
$$M_{y} = \cos\varphi$$
$$M_{z} = 0$$

Magnetization within the core (r<a)

$$M_{x} = -\frac{2ar}{a^{2} + r^{2}}\sin\varphi$$
$$M_{y} = \frac{2ar}{a^{2} + r^{2}}\cos\varphi$$
$$M_{z} = \sqrt{1 - \left(M_{x}^{2} + M_{y}^{2}\right)}$$

- Derived using a variational principle
- Vortex core size determined by magnetostatic and exchange energy

Properties:

- Surface charges in vortex core (top and bottom)
- Surface charges on the circumference for shifted vortices
- No volume charges

Finite Element Approach

- divide particles into finite elements
 ⇒ triangles, tetrahedrons
- expand J with basis function J_i

$$\vec{J}(\vec{x}) = \sum_{i=1}^{nodes} \vec{J}_i \varphi_i(\vec{x})$$

• energy as a function of $J_1, J_2 \dots J_N$

$$E(\vec{J}_1, \vec{J}_2 \vec{J}_N)$$

$$\vec{H}_{k} = -\frac{1}{V_{k}} \frac{\partial E(\vec{J}_{1}, \vec{J}_{2}, \dots, \vec{J}_{N})}{\partial \vec{J}_{k}}$$

- \Rightarrow effective field on irregular grids
- rigid magnetic moment at the nodes

Static properties

	Magnetostatic	Exchange	Total energy
	energy	energy	(J/m ^ 3)
Rigid vortex model (Usov ansatz)	4.321E+02	5.356E+03	5.788E+03
FE simulation (equilib.)	3.871E+02	5.150E+03	5.537E+03
difference FE - analytical	-10.42%	-3.85%	-4.35%

Hysteresis loop

Hysteresis movie

- L/R=20/100 nm
- Nucleation field: 5 kA/m
- Annihilation field: 70 kA/m

Energy for shifted vortex

Homogeneous magnetization becomes metastable for H_{ext}<35 kA/m

nucleation field: 5 kA/m annihilation field: 70 kA/m

Larger dot

- L/R=40/200 nm
- Nucleation field: 28 kA/m
- Annihilation field: 84 kA/m

Average magnetization

- Shape of vortex core is hardly influenced
- Average magnetization in good agreement, but...

Surface charges

Comparison with rigid vortex model

- Surface charge on circumference
- Rigid vortex model overestimates the charge density

Contour plots of $IM_{rv}-M_{FE}I/I$

 $0.8 \text{ kA/m} = 10 \text{ Oe}, <M_x > = -0.02, b/R = -0.03$

8.8 kA/m = 110 Oe, $\langle M_x \rangle$ =-0.12, b/R = -0.13

16.7 kA/m = 210 Oe, $\langle M_x \rangle$ =-0.23, b/R = -0.25 25.5 kA/m = 320 Oe, $\langle M_x \rangle$ =-0.34, b/R = -0.37

Contour plots of $|M_{rv}-M_{FE}|/2$

34.2 kA/m = 430 Oe, $\langle M_x \rangle$ =-0.44, b/R = -0.48 42.2 kA/m = 530 Oe, $\langle M_x \rangle$ =-0.52, b/R = -0.57

54.1 kA/m = 680 Oe, $\langle M_x \rangle$ =-0.62, b/R = -0.67 66 kA/m = 830 Oe, $\langle M_x \rangle$ =-0.72, b/R = -0.76

Average magnetization

- Shape of vortex core is hardly influenced
- Average magnetization in good agreement, but...

Volume charges in zero field /1

Volume charges in zero field /2

Simple equilibrium states

radius

Phase diagram

Magnetization distributions

L/R=2 R=40 nm

Summary

- Investigation of static properties of permalloy nanodots using a 3D FE method
- Detailed comparison with the rigid vortex model and Usov ansatz
 - vortex is truly rigid
 - deviations in magnetization distribution
 - core edge: larger vortex core radii
 - shifted vortices: deviations in surface charge distribution
- Surface and volume charges (magnetostatics) determine static behavior
- sharp transition from in plane to vortex state