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1 Maxwell’s equations

Until the 19th century eledric and magnetic &f eds were seen as two indepencdent physicd
ocaurences. In 18200ersted proved, that eledric currents can influence he neede d a
compass Ampere and Faradby laid the foundation for the unified theory of eledrodynamics,
which was elaborated by James Clerk Maxwell (1831-1879.
His famous equations are the starting point for our investigations:

divD = p

divB =0
1)

curlE = -

[

- 0D .
curlH =—+
X J
In order to solve these equationsfor our puipose, we hawe to make everal assumptions. First,

we negled any displacanent currents D= sosﬁ , Which are typicdly relevant only at radio

frequencies (in the MHz regime), and set € = 1. In the quasistatic approximation we omit the

theterm

(2)

S

Sewmndly, we asume, that there areno freecharges p. The simplified Maxwell equations are
given by

divE =0

divB =0
©)

curlg = -

2|3

curlH = §
Then, we require the field intensity H and the flux intensity B to obey the congtitutive
relationship
B=puH. (4)
If the material isnonlinea (e.g. ferromagnetic), the permedili ty 1 isafunction of B.

_B(H)

H ()

u

However, we will consider only linea materialsin this projed.



The relationship between the eledric field intensity E and the current density | isgiven by
j=ot. (6)

Now weintroduce amagnetic vedor potential A, and defineit as

B =curlA (7)
which guarantees the validity of Maxwell’ s second equation. Then we canrewrite te fourth
eguation and obtain

curl(i curlA) = | (8)
u
With the Coulomb gauge condition
divA=0 (9)
and the well known operator relation
curl (curlA) = grad(divA) - div(gradA) (10)
we find
1 -
—pdlv(gradA) =]. (11

Inserting (7) in the third Maxwell equation yields
R oA
IE = —curl —. 12
cur cur a (12

In the casg of 2D problems, we can integate this equation and ge

. OA
E=-— (13)

and together with the constitutive relationship between the dedric field intensity E and the

current density j we obtain

- _OA
j=-04 (14)

Finally weinsert thisin (11) to diminate j and arrive at

1 . - _ dA -
ple(gradA) =0 0t Jsrc’ (15)

where J__ representsthe appied arrent sources.

Finally, we restrict ourselves to time harmonic problems, in which all fields oscill ate
harmonicdly at one fixed frequency. Thus, we can use a phasor transformation and rewrite the

magnetic vedor potential as



A= Re[d(coswt +i Snat)] = Re[ae'“] (16)
inwhich & isthe compex amglitude. By substituting this ansatzin (15) we can eliminate the

time derivative and findly arrive at

1 -
pdiv(gradé) =lwoa - - a7



2 The finite element method

The finite element method has become awell egablishedmethod in meny fieldsof computer
aided engineeaing, such as structural ardysis, fluid dynamics, and eledromagnetic field
computation.
There are tree man stepsduring the solution of a partial diff erential equation (PDE) with the
finite element method. First, the doman, on which the PDE should be solved, is discretized
into finite elenents. Depending on the dimengon of the problem this can ke triangles, squares,
redangles, or tetrahedrons, cubes, or hexahedrons. The solution of the PDE is approximated
by piecevise continuous polynomids and the PDE hereby discretizedand Flit into afinite
number of algebraic equations. Thus, the am is to determine the unknown coefficients of these
polynomials in such away, that distance (which is defined by the norm in a suitable vedor
gpace from the exad solution becomesaminimum. Therefore, thefinite dement method is
esentiadly avariational minimization technique.
Sincethe number of elementsisfinite, we have reduced the problem of finding a continuous
solution for our PDE to calculating the finite number of coefficients of the polynomials
The solution of Poison's equation (17), which isrequired to cadculate the magnetic vedor
potential, has to be solved for a given current density distribution. We write Poison’s equation
inamore general form

Au(r) = f (7). (18
In order to apply the finite element method, we hae tofind a variationd formuation.
The Galerkin method leals to the weak formulation of the problem: We multiply Poison' s

equation by atest function v(r) and integrate over the solution domain
IAu(F)v(F)dF :I f(F)v(r)dr . (29
Q Q

Integration by parts gives

- [ Du(r)Ov(r)dr + [ DU(F)V(F)dF, = [ f (PP - (20)

where 1, denotes the surfacenormd on theboundary I". If appropriate boundary conditions
define the values of u (Dirichlet boundary conditions) or of itsderivatives [lu =g (Neumann

boundary conditions) on the boundary, we can amplify (3ncev vanishes, where Dirichlet

boundary conditions apply)
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- [ Ou(f)Ov(r)dr + [ gv(r)dr, = [ f (F)v(7)dr. (21
| Joun =

n

The exad solution u(r) shall be approximated by alinearcombination of trial functions ¢, ()

u, () = ZO ug;(F). (22)

and we use afinite st of test functions v.

If weinsert this expandon in (21) and assume only Dirichlet boundary conditions
ZUiIDcpi (F)DvidF:If(F)dF. (23
1=0

we get a system of algebraic equations.
This can be solved with any standard method for the solution of a system of algebraic
eguations, such asthe Gaul? method, the Cholesky decomposition or iterative schemes like the

conjugate gradient method.
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3 Bound ary conditions

For the solution of partial differential equations like Maxwell’ s equations, we need boundary
conditions to find a unique solution. There are threetypes of boundary conditions:

Dirichlet boundary conditions

The value of the solution is explicitly defined on the boundary (or part of it). The magnetic
vedor potential isusually set to zero dong aboundary, which should not be crossed by
magnetic flux.

Neumann boundary conditions

The normal derivative of the solution is defined on the boundary. If we set thenormd
derivative of the magnetic vedor potential to zero, the boundary can ke interpreted as an
interfacewith a highly permeable metal. Then, the magnetic flux passesthe interfaceat an
angle of 90° to the plane of the interface In order to find a unique solution, a Dirichlet
boundary condition must be defined somewhere on the boundary of the domain.

Robin boundary conditions

A combination of the first two boundary conditions is calleda Robin boundary condition. In
this case the normal derivative of the solution and the value of the solution itself on the
boundary are connecied by afunction.

Asymptotic boundary conditions

For many problems neither of the two boundary conditions above is suitable: Natura boundary
conditions usually set the solution to a distinct vaue a infinity. However, finite element
methods, can only handle finite domains to solve the problem in acomputer at finite speal with
finite memory.

One workaround is the truncation of outer boundaries. At an arbitrary distance“far enough
away” from the areaof interest Dirichlet or Neumann boundary conditions are applied. Thisis
very simple, but not very acarrate. In addition, it is quite inefficient, because avolume of air,
which is much larger than the areaof interest, has to be modeled. A fine mesh in the aeaof
interest and a coarse mesh in theexterior canreduce thiecomputationd eff ort again.
Asymptotic boundary conditions transform natural boundary conditions into Robin boundary
conditions on the surfaceof afinite domain. Thisis achieved by developing the solution into a

series expansion of sphericad harmonics.

00

A(r,6) = z?—gcos(me ra,) (24)

m=1
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Only the leading harmonic
A(r,6) = ‘:‘—;cos(ne ra) (25

is consdered, since higher order harmonics decgy very quickly.

We get thenormd derivative on a spherica surfaceby diff erentiating with resped to r. Solving

%ﬂQQA:O (26)

If the outer edge of the solution domain is circular the open domain solution can be closdy

approximated by applying (26) at theboundary r =r,, which should be at least 5 times the

for a, and substituting into (25) gives

radius of the areaof interest.
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4 FEMM

Thefinite elenent packag FEMM by David Meeler [3] provides acompleteset of tools for
solving static and low frequerncy 2D or axisymmetric problemsin eledrodynamics. Like any
typicd FE padage it consist of the following threeparts:

Preprocesor

The preprocessor (femme.exe ) isasimple CAD program for defining the geometry of the
problem, materia properties, mesh densities and boundary conditions. The finite element mesh
can be creaedandviewed. Figure 1 shows asnapshot of the preprocessor with amodd of the
single turn coil (cf. sedion 6.1). The horizontal axisisthe r-axis and the verticd axisisthe z-
axis. The small dot in the middle on the left border, which isthe symmetry axis, is the sample
and to itsright the crosssedion o thesingle turn cail is visible. The semi -circle denotes the
boundary, where asymptotic boundary conditions are applied. In dl following figuresthi s (r>0,
2) plane with the asymptotic boundary will be displayed.

|j proj6.FEM - femme

File Edt Zoom Pmoblem Grid Operation Properties Mesh Analysis Help

[« 2l T <[] [er]0] #[=[Of5]e[t]$]+]

[r=8E.4000,2=20.6000]

Figure 1. User interfaceof the preprocessor

Solver
The solver (fkern.exe ) reads theinformation defined duingthe prgprocessng step and

solves Maxwell’ s equations.



14

Postprocesor
The postprocesor (femmview.exe ) displaysthe results as density and contour plots. In
addition the user can insped the solution atany point, plot interesting resultsin graphs and

cdculate certan integrds.

4.1 2D simplifications

In general, the magnetic vedor potentia isa 3D vedor with threenon-vanishing components.
However, in 2D planar and axisymmetric case two of thesecomponerts are zero. Only the
“out of plane” componentisnon-zero. The vedor potential approad has the advantage, that
only one equetion (8) or (11) has to be solved. The magnetic field andthe magnetic induction
can be deduced by differentiating the veaor potential. In addition, (8) isan élli ptic partial
differential equation. Thisisawell known and thoroughly studied type, which occursin many

engineeing problems.

4.2  Axisymmetric problems

In axisymnteric problems the magnetic veaor potential must vanish at r = 0. Thus, we do not
have to define any other Dirichlet boundary conditions, if r =0 ispart of the domain

boundary.

4.3 Program test

Thefinite elenent packag@ FEMM has bean tested by calculating the megneticfield of asngle

turn coil with constant current. The results can easily be compared with the analytic solution.

inner diameter: 5cm

coil area$S: 78,54 cn?

crosssedion: 0.2x0.2 cn? = 0.04 cn? = 4e-6 Y’
current density: 1 MA/n?

total current: 4A

The magnetic induction B a r = 0 in the centre of the coil is given by [4]
IR?
B = I:O 2432
2(R* +h?)
With the data given above we get B = 5.026%-5 T. (The crosssedion of thecall hasbeen
negleded.)

(27)



With FEMM we get thefollowing results:

nodes elements B (T)

2673 5077 5.03e-5
5229 10161 4.92e-5
10264 20053 4.96e-5
27870 55103 4.93e5

Table1l: FEMM resultsfor FE mesheswith different density

3.000e-004

|B|, Tesla

2.500e-004

2.000e-004

1.500e-004

1.000e-004

5.000e-005 -

0.000e+000 T T T T
0.000000 1.000000 2.000000 3.000000 4.000000

Length, cm

Figure 2: Induction in radial distancefrom the symmetry axis



5 Experimental setup

5.1 Field coill

Cu wire; 5x9 mnt crosssedion
spedfic resistivity:  1.79 10° Qm

spedfic conductivity: 55.866 MS/m

insulation: 0.15 mm glasfibre-epoxy

coil dimensions:

inner diameter: 70 mm
layers. 2or4
turng/layer:

4.91
533
0.85

30

5.9 (4.1)
9.6 (6.7)
234 (19)
38(26.6)
4.3

75

1091
2423

1

25

5.7 (4.3)
9.3(6.9)
114 (9.7)
187 (14)
9.1

15.7

Table 2: Field coil spedfications

*) the values for the second halfwave are given in brackets

16



5.2 Samples

units Cul Cu2 Cu3 All Al2 Al3
shape cylinder cylinder sphere cylinder cylinder sphere

height mm 8 8 8 8
diameter mm 4 4 7,3 4 4 5
volume mm”3 101 101 203,69 101 101 65,45
weight g 0,90926 1,81008 0,28055 0,1877
spec. resistivity Qmm~2/m| 0,01724 0,0176 0,0176 0,052 0,0382 0,0382
spec. conductivity MS/m 58,00 56,82 56,82 19,23 26,18 26,18

Table 3: Spedfications of the samples

The data given by WebElements [6] for bulk material are:

Cu

spedficresigtivity:  1.7e-8 Qm
spedafic conductivity: 58.82MS/m
density: 8920kg/m® = 8.920g/cm®

Al

spedficresistivity: 2.65e-8 Qm
spedafic conductivity: 37.74MS/m
density: 2700kg/m® = 2.700g/cm®

17
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6 Finite element models

Sincethe externd field cannot be dfinedexplicitly in FEMM, we hae to model a coil to
generate the magnetic field. Two different models have been tested. First, acoil of asngle
turn, whose dimensions are equivalent to the outer dimension of the field coil, which hasbeen
used in the experiments. Secondly, a cetailed model of thecoil with 4 layers of 24 windings
ead hes been creaed.

6.1  Single turn coil

inner diameter: 70mm

outer diameter: 120mm

height: 226mm
crosssedion: 113002 = 5650mnT

Figure 3: Single turn coill

6.2 Detailed coil model
4 |layers of 24 turnseadt
crosssedion: 4x9 mnt

tota crosssedion:  4x24x36 mnt = 3456 mn?



Figure 4. Detailed coil model

19



20

7 Magnetic field

A test for FEMM isthe calculation of the megneticfield, whichis gererated by thefield cail .

The experimentd data aegivenin tabde 1.

7.1  Single turn coil

A mesh of 705nodes and 1186elenments has bee used to calculatethefield on theaxisin the

centre of the cail . A static current was assimed.

AN

Figure5: Finite eement mesh of the singleturn coil

maximum current tota:l maximum current/field] calculated current/field
current layers capacity density curren field ratio field ratio
kA mF MA/m”2 kA T T

9,70 4 8 164,81 931,20 4,30 216,56 4,80 193,96
11,40 4 8 193,70 1094,40 5,70 192,00 5,64 193,94
14,00 4 24 237,88 1344,00 6,90 194,78 6,93 193,94
18,70 4 24 317,73 1795,20 9,30 193,03 9,26 193,95
19,00 2 8 161,42 912,00 4,10 222,44 4,70 193,92
23,40 2 8 198,80 1123,20 5,90 190,37 5,79 193,96
26,60 2 24 225,98 1276,80 6,70 190,57 6,58 193,95
38,00 2 24 322,83 1824,00 9,60 190,00 9,41 193,94

Table 4: Magnetic field of the single turn cail

The results of the calculations arein agreenent with theexpenmental values. I n the numeiicd
simulation, the current to field ratio is constant (which we exped for a constart current density
over the crosssedion of thecall) and in goad agreament with the experimentally measured
data. There are only two data sts (both of them are data of the sscond hdfwawve with the 8 mF
cgpadtor), for which the current/field ratio is too high. This can beexplained by the fad, that
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the experimentd setupincludesafreeRLC oscillator circuit, which gereratesa damped pulse.
The damping hasto be consdered, whencalculating thefield. However, our harmonic
approximation cannot take thisinto acount.

If aharmonic current with afrequency of 112Hz is applied, the induction on the axis drops to
an amplitude of 0.4238T for a maximum current of 11.4 kA. The reason is, that the larmonic
analysis solves the guasistatic problem and includessdlf inductance and eddy currents within
the coil. Howewer, the current pulsein the experimert lasts for only one period. Thus, the
system cannot read equili brium. In order to avoid this effed, the conductivity of the coil has

been set to zeroin dl following calculations. AsFEMM 4ill all ows us to define acurrert, we

get rid of the above mentionedeffeds.

N N

Figure 6: Flux linesof a singleturn coil with static curr ent
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Figure 7: Flux linesof a singleturn coil with harmonic curr ent

7.2  Detailed coil model
With the detailed model of the cail, which consists of 4 layers of 24 wrns eady, the results
givenin table 5 were obtained. Onceagan we find diff erences between &periment and

simulation for one data set, which has aready been discussed in the previous sedion.

maximum current]f maximum current/field] calculated current/field

current layers density] field ratio field ratio
kA MA/m2 T T

9,70 4 269,44 4,30 2,26 4,80 2,02

11,40 4 316,67 5,70 2,00 5,64 2,02

14,00 4 388,89 6,90 2,03 6,93 2,02

18,70 4 519,44 9,30 2,01 9,26 2,02

Table5: Magnetic field of the detailed coil model
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Figure 8: Finite element mesh of the detailed coil modée

The finite element mesh consists of 6108nodesand 11946elements.
For aharmonic current of 114 kA at 112Hz with aconductivity of 558659MS/m of the cail
the induction on the symmetry axisin the centre of the coil drops to an amplitudeof 0.4123T.

If we set the conductivity of coil to zeao wefindan amplitudeof 5.64T for the induction.

Figure 9: Flux linesof the detailed coil model
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8 Eddy currents

The experimental setup consists of a big condenser battery, which powers the field coil
described in sedion 5.1. The discharge of the condenser batteries runs through an

RLC oscillator and the field coil s, which generate the magnetic field. The magnetic field asa
function of time is shown infigure 10 for atypicd discharging process It has (approximatgy)
the shape of adamped sine. Thus, it seansto be sensible, if we make a time harmonic andysis
and compare the results with the pulse field experiments. The magnetic field reates a
maximum value of 5.23 T and a minimum value of 4.29 T. The time from the beginning until
the end of the snusoidaly varying field is approximatey 0.008864s, which correspondsto a
frequency of 112Hz.

Al-cylinder; | = 8mm, O = 4mm
6 - heat treated; C = 8mF

-6 T ' T T T T T T T
0.000 0.005 0.010 0.015 0.020

t(s)

Figure 10: Magnetic field due to a current pulsein the field coil

8.1 Sample Cul (cylindrical)

In the experiment with theabovegiven field, a magnetizaion of 94 kA/m wasfound at the

maximum of the field.
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8.1.1 Single turn coil

3.000e+002 -
3_eddy|, MAIY2
N h Re[J_eddy], MAIY2

1.000e+002 -

0.000e+000

-1.000e+002 -

-2.000e+002 -

-3.000e+002 T T T
0.000000 0.050000 0.100000 0.150000
Length, cm

Figure 11: Complex eddy curr ent density asa function of radial distancefrom axis

At afrequency of 112 Hz the maximum current density is je = 2188329MA/n? and givesa

magnetization of M = 10941645kA/m. (Seethe following sedions on how the magnetizaion
iscdculated.)

8.1.2 Coil model

2.000e+001

13_eddy|, A2
Re[J_eddy], MAIY2

1.000e+001 -

0.000e+000

-1.000e+001

-2.000e+001

T T T
0.000000 0.050000 0.100000 0.150000
Length, cm

Figure 122 Complex eddy curr ent density asa function of radial distancefrom axis

(10H2)

At afrequency of 10 Hz the maximum current density is jmx = 19.43746MA/n and givesa
magnetization of M = 9.71873kA/m.
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2.000e+001

13_eddy|, MAIT2

Re[J_eddy], MA/nT2
Im[J_eddy], MA/m’2
1.000e+001

0.000e+000

-1.000e+001

-2.000e+001 T T T T T T T
0.000000 0.100000 0.200000 0.300000 0.400000 0.500000 0.600000 0.700000
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Figure 13: Complex eddy curr ent density & a constant distance of 01 cm from axis

(10H2)

It isclealy seen, that the eddycurrent density does not vary with the postion dong the
Symimetry axis.

3.000e+002
|J_eddy|, M2
2.000e+002 | m[f_af("yj] !A:N\WQ

1.000e+002

0.000e+000

~1.000e+002 —~—

-2.000e+002

-3.000e+002 T T T T
0.000000 0.050000 0.100000 0.150000 0.200000
Length, cm

Figure 14: Complex eddy curr ent density asa function of radial distancefrom axis

(112H2)

At afrequency of 112 Hz the maximum current density is je = 227.5316 MA/n? and givesa
magnetization of M = 1137658kA/m.

2.000e+002
|J_eddy], MAIMY2
Re[J_eddy], MA/m'2
Im[J_eddy], MA/nT2

1.000e+002

0.000e+000

-1.000e+002 - /

-2.000e+002 T T T T T T T T

0.000000 0.100000 0.200000 0.300000 0.400000 0.500000 0.600000 0.700000 0.800000
Length, cm

Figure 15: Complex eddy curr ent density & a constant distance of 01 cm from axis
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8.1.2.1 High resolution mesh
Sample Cul, 112Hz

Figure 16. High resolution mesh of the cylindrical sample

The mesh consists of 6363nodes and 12434elenents. A smdl portionisshown in figure 19.
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Figure 17. Complex eddy curr ent density asa function of radial distancefrom axis

Figure 20 shows the perfedly linea dependence of the eddy current densty on the radial
distance from the symmetry axis. At the symmetry axis the eddy currents vanish, and atthe
circumferencethey read a maximum. The amgitude of the complex eddy current is found as
(-5.180091 2287667 MA/nY. Thus, the phase diff erence between the current in thefield coil
and the eddy currentis -88,70° and the eddy currentslea the call currentsby about a quarter
phase. The absolute value of the eddycurrentsis 2288253MA/n?, which isin good
agreament with the coarse mesh usedin section 8.1.2.
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Figure 18: Complex eddy curr ent density & constant distance from axis
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Figure 15 proves, that the eddy currentdengty is perfealy constant paralel to the symmetry

axis.

8.2 Sample Al3 (spherical)

Figure 19: High resolution mesh of the spherical sample
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Figure 20: Complex eddy curr ent density asa function of radial distancefrom axis

(centreof the sphere)
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Figure 21: Complex eddy curr ent density asa function of radial distancefrom axis (at

r=1.25mm)
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Figure 22. Complex eddy curr ent density & constant distancefrom axis (1.25 mm)

8.3 Sample Cu3
7477nodes, 14660elements

Figure 23: High resolution mesh of the spherical sample
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Figure 24: Complex eddy curr ent density asa function of radial distancefrom axis

(centreof the sphere)

8.4 Comparison of experimental and numerical results

sample] frequency Bmax Mexp Mexp/f j_eddy_ max Mnum Mnum/f Mnum/
units Hz T  kA/m KkA/(Tm) A kA/m KkA/(Tm) Mexp
Cul 112 5,603 0,00 228,66 114,33 1,02
Cul 109,89 5,603 0,00 222,93 111,47 1,01
Cul 112 5,23 94 0,84 213,59 106,80 0,95 1,13613
Cul 109,89 5,23 94 0,86 209,57 104,79 0,95 1,11474
Cu2 109,89 5,17 90 0,82 202,94 101,47 0,92 1,12744
Cu3 109,89 5,17 245,13 2,23 368,47 268,98 2,45 1,09729
Cu2 63,69 5,17 48,8 0,77 116,90 58,45 0,92 1,19774
Cu3 63,69 5,17 133,22 2,09 213,79 156,07 2,45 1,17167
All 112 5,23 43,335 0,39 70,79 35,40 0,32 0,81678
All 109,89 5,23 43,335 0,39 69,51 34,75 0,32 0,80196
Al2 109,89 5,17 37 0,34 93,53 46,77 0,43 1,26397
Al3 109,89 5,17 50 0,46 116,27 58,14 0,53 1,16271
Al2 63,69 5,17 20,9 0,33 54,21 27,11 0,43 1,29697
Al3 63,69 5,17 28,2 0,44 67,54 33,77 0,53 1,19749

Table 6: Comparison of experimental and numerical results

The agreenent betwen experimental and rumericd results isgoad for both cylindrica (Cul,
Cu2, All, Al2) and sphericd (Cu3, Al3) samples.
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9 Indu ced magnetic moment

9.1 Cylindrical samples

In order to cdculate the magnetic moment, which is caused by the circular eddy currents, we
have to integrate the eddy current densty over the volume of the cylindrical sampes (radius s,
height h).

r h

u ='§dr"(|:dzj(r')r'2 m (28)

We have seen in figure 19, that the eddy current density is diredly proportional to the radal
distance from the symmetry axis. Thus, we write
r.I

j(r1) == 29

S

We obtain for the magnetic moment

3

u :j%h;fdr'r'?’n: jmaxhr[%. (30)
The magnetizaion is given by
M=p/V (32)
where V is the volume of our cylinders
V =r2nh (329
Finaly, we find for the magnetizaion
M = Jmas (33)

4
Hence the magnetization isindependent of the height of the cylinder.

Since our samples have a radius rs of 2 mmwe get

M(kA/m)ijmax(MA/mz). (34)

9.2 Spherical samples

In order to cdculate the magnetic moment of the sphericd samples, we have to integrate the

eddy current density over the volume of the sphere (radiusr).
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= % Ir'xf(r')dr':
! (39

= %}}Zfr j(r',9)sing [ sinddr'd9d¢

000

We have seen in figure 20, that the eddy current density is dso in gherical @mplesdiredly
proportional to the radial distance from the symmetry axis. Thus, we write

o Jmax! '€COSE ] axl 'SING

i(r,6) = = Jned o (36)

5 S |19:r[/ 2-6

We obtain for the magnetic moment
p=2 [rxi(rdr=
2]

- %I}Zfr i(r',9)sind 1 sinddr'dodg =

000

1 J S 14 .3 1
= 2 r'“sin®*g Ldr'dd = ) 3
2 rs q0"0r ( 7)

. 5
= T d;— [{-cos9 +1/3cos’ 19)|Z =
r

S

_A4m. 4
=7 Jnals
15
The magnetizaion is given by
M=u/V , (38)
where V is the volume of our cylinders
4’
V=—~22 39
3 (39)
Finaly, we find for the magnetizaion
M - Jmaxrs . (40)
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10 Eddy currents in a solid sphere

10.1 Analytical solution

Beware:

Thereis aproblem with this analytica solution (email from David Meeker):

From: Dcm3c@aol.com

Date: Tue, 5 Oct 1999 01:02:53 EDT

To: femm@egroups.com

Subject: [femm] Re: Problems with axisymmetric problems

Thanks for the note -- your writeup is pretty interesting. However, | think
that femm is actually doing the correct thing in the case of the small
spheres; something seems to be wrong with the analytical solution presented
for this case.

To see the problem, the easiest case to consider is the one corresponding to
Figure 31 (below).

In this case, a copper s phere with a radius of 3.65 mm and a conductivity of
sigma=56.82 MS/m is exposed to a source field of a Bsrc=1 Tesla amplitude

varying at 109.89 Hz (omega=690.46 rad/sec). This apparently corresponds to

the miniturnsphere.fem example problem.

This is a good case to consider because the radius and frequency are small

enough that the reaction field from the eddy currents can be neglected (The

skin depth at this frequency and conductivity is 6.4 mm. Since the skin

depth is substantially greater than t he radius of the sphere, neglecting the
reaction currents for the purpose of estimating the induced current density

is reasonable). When you can ignore the reaction currents, you can

substitute directly into Faraday's law to get an expression for the e ddy
current density:

J=- j*omega*sigma*r*Bsrc/2
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Induced Currents in a Copper Sphere af Low Frequencies

This is meant to apply when frequencies are low enough so that the radius of the sphere,
R, is less than the skin depth:

Faraday's Law:
fE-a1=-[[ joB-da

In this case, frequencies are low enough so that we can ignore the reaction field produced
by the eddy currents. Flux density B just consists of the source field, B, which is axially
directed and uniform. Now, we can just substitute directly into Faraday's Law to solve
for the induced currents. For some circular loop of radius r, we can write, for the right-
hand side:

- ” JOB -da = —j@B, 1r’

For the left-hand side, we can write:

2mrd

[E-ai=

Setting the two sides equal and solving for J yields:

. 1'Bs.ln.'
e

This formula predicts an eddy current density of 71.6 MA/m”2 at the farthest

radius of the sphere. Looking at the finite element solution, the amplitude

of the induced current density at the point (r=3. 649,z=0) is 71.63 MA/m"2,
showing a good agreement.

Now, evaluating the sphere.nb Mathematica notebook under the above conditions
yields a current 106.8 MA/m”2, which is substantially larger than one might
expect.

So, what is the difference? | loaded sphere.nb into Mathematica and took the
power series about omega=0 using the Series[] function and subsitituted in
muO0 for mu, since we are considering the copper sphere. The result is:

J=- j*(3/4)*omega*sigma*r*Brc

Now, this doesn't match the low - freq uency limiting case that that one can
obtain from Faraday's law. There is an extra factor of 3/2 in there for this
limiting case.

For a solid sphere in a uniform sinusoidal magnetic field with an amplitude of 1 T the magnetic
vedor potential A can be calculated analyticdly [7]. In the sphereit isgiven by

A, (r.0,¢9) =al],(kr)sind (41)
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A (r0,0) = Ay(r,0,9) =0 (42)
and in empty spaceit is
Ay (r,0,0) = %r +r£2%n6 (43
Ay (r,6,0) = Ay(r.6,9) =0 (44)
where
— 3rS 4
a= 21D (45
_ 1 a(kry) ko (krg) =y (k) O
"o, B 221 b 49
_ Ja(krg)  Ckrgjo(krg) = jy (kry) O
T B w8 @0

J,, () arethe nth order Bessel functions of first kind, r, isthe radius of the solid sphere, and k

k= (—1+i)1/% (48)

isgiven by

10.2 Numerical solution

A solid iron spherewith radiusrs =5 cm, i, =20, 0= 10 MS/m in asinusoidally varying
magnetic field with an amplitude of 1 T and afrequency of 50 Hz was smulated. Theextemal
field was generated by the well known field coil and its current suitably rescaded. Therefore, the
magnetic field is not perfealy homogeneous. The finite element mesh consisted of 9324nodes

and 18319elements.

Figure 25. FE mesh (small cut out) of theiron sphere and detailed coil mode
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Figure 29: Eddy curr ent density in the iron sphee
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10.3 Sample Cu3

The results for the sphericd Copper sample Cu3in asinusoidally varying field of 1 T showsa
rather large deviation from the ardlytic results. It hasbeen erified, that the asymptotic
boundary conditions do not ac@unt for that. Even if the radius of the sphericd boundary,
where asymptotic boundary conditions apgy, is doubled, the results reman dmost identica
(they cannot be distinguished in the plots below). Also the smple model of the field coil (the
single turn coil) leaves the result unchanged. Even if the diameter of the field coil and its height

are doubled to improve the homogeneity of the field, no differencein the result can be found.

=
o

// numerical solution
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I/

= = = pumerical solution

// Re[J_eddy] MA/m~2
= ==numerical solution
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Figure 30: Eddy curr ent density in sample Cu2 @L. T
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Figure 31: Eddy curr ent density in sample Cu2 @L. T
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Figure 322 Eddy curr ent density in sample Cu2 @ 37T

10.4 Frequency dependence

The frequency dependence of the magnetizaion is shown in thefollowing table (data analyzed

oB
and colleaed by Prof. Grossnger). The magnetization has been plotted as a function of rY



and the results analyzed by linea regresson. The off set gives the \dlue of M for

40

oB
ER

where the magnetization should vanish. However, these values are acceptable, if we takeinto

acount, that the megnetizationis typicdly of theorder of 100kA/m.

sample shape height diameter Weighq capacity Ul offset error slope errc
Cu sphere 7,3mm 1,81008 g 8 mF 2000 V]| 1518,787 315,574 -9,670E-06 1,791E-O:
Cu sphere 7,3mm 1,81008¢g] 24 mF 1180 V]-2966,477 55,342 -9,236E-06 5,583E-0
Cu cylinder 8 mm 4 mm 0,90926 g 8 mF 2000V| 693,263 32,656 -3,505E-06 1,820E-O
Cu cylinder 8 mm 4mm 0,90926 g] 24 mF 1180V] -322,684 13,094 -3,435E-06 1,306E-0
Al sphere 5mm 187,7 mg 8 mF 2000V] 716,247 18,547 -1,978E-06 1,026E-0
Al sphere 5mm 187,77 mg| 24 mF 1180V]-1919,135 26,116 -1,885E-06 2,596E-O
Al cylinder 8 mm 4 mm 280,55 mg 8 mF 2000 V] 1167,680 10,552 -1,500E-06 5,840E-1
Al cylinder 8 mm 4mm 280,55mg] 24 mF 1180V]-1272,926 10,050 -1,403E-06 9,986E-1

Table 7: Comparison of experimental and numerical results
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11 Comments on release 2.1a of FEMM

Copied from http://members.aol.com/gmagnetics/changes.htm
Changesfrom 2.1to0 2.1a - September 11, 1999
» Thisismostly a bugfix version. No obvious functionality has been added to the program. However, quite a

lot of work has gone on ““under thehood"  to fix some bugsthat cropped up and to give more acurate
answers.

» Severd integrals had errors when applied to axisymmetric problems. These arors have now been fixed.
The spedfic integrals modified are:

— Tota losses--forgot to multiply by 2*Pi*r
— Tota current--modified to include induced currentsin the integration. Previously, only source
currents were included.

» Theformulation used to solve axisymmetric problems has been changed. The old formulation gave good
performanceamost al of the time, but occasionally, a problem would come along in which the scheme
would exhibit poor convergence The formulation hasbeen dianged to one similar to the axisymmeric
formulation suggested by Henrotte & al. in their paper A new method for axisymmetric linear and
nonlinear problems,” IEEE Trans.Mag. 29(3):133335 March 1993 Thisformulation has the same
well -behaved characteristics asthe old formulation in the region close to ther=0line, but it also
succes<ully deals with the problemsin which the old formulation gave spurious results. The new
formulation has been applied to bah static and harmonic problemsin femm. The wrong eddy currents were
reported in response to inquiries about solution propertiesat a particular point in the axisymmetric case.

Some typographical errorsin the manual were fixed.
This new release has been tested on afew problems, and it was found, that the postprocessng

tool femmview doesnot display the results properly any more. The eddy current density
seans not to be proportiond to the radius (for smdl distarnces of a few millim etres) any more,
but to bealmost constant with a non-vanishing value for r=0. However, the the old version
(2.1) of femmview can be used with the new release of femme and fkern . The
preprocessng and FE programs femme and fkern  sean to work properly. For the solid iron
sphere and the amdl copper sphere identicd results have been obtained with the old and new
versions.

The remark in the above given notesfor the rew relea® on the behgiour of the solution in the
region closeto r=0 seamsto be noteworthy. Probably thisis a known problem in the solution
of axisymmetric eledromagnetic problems, because the solution * faraway” from theaxis (@s
isthe caefor the 5 cm iron sphere) isin good agreamnent with the ardlyticd solution. Close to
the symmetry axis both, the FE solution of the iron sphere and that of the copper spheres

shows rather large deviations for the ardlytica solution.
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12 Conclusions

Eddy currents, which are induced in a conductor by anon-stealy external magnetic field, have
been cdculated and compared with experimental results. The ardyticd solution for spherica
samples has been found to agreevery well with the numericd results of the finite elenent
package FEMMor large samples (the iron sphere). For small samples and at small distances
from the symmetry axis rather large deviations have been found. The ardlytica solutionis
about twiceashigh asthe numericd solution for the coppea sphere. However, the rumericd
solution is still about twiceas high asthe experimentall y found magnetic moment.

The agreenent between numericd and experimental resultsis better for cylindricd samples.

There are afewremarkalde aspeds about theanalyticd solution for sphericd samples:

= Only a, b, and D are functions of r_, the radius of the sphere. Since A, is proportional to a
the radius r, influencesonly the scding of A, and therefore of the eddy currents.
— The* shape” of thered and imaginary partsof A, isaways given by the Bessl function

J;(kr). Only k, which is a function of the frequency, the magnetic permeability, and the

conductivity, entersinto the Bessl function.
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14 List of models

14.1 Subdirectory test

14.1.1 turn.FEM

Thismodel consists of avery thin single turn coil (2x2 mm) with an inner radius of 50mm. It

has been used to compare the solution of femme with the ardlytic result for acircular current.

14.1.2 coilturn.FEM

Thismodel consists of the above described thin single turn coil and amodd of thefield cail

which isused in the experimentd setup.

14.2 Subdirectory experiment

14.2.1 singturn.FEM

This model includes the smplified model of the field coil (only one big turn) and a cylinder

with aradius of 2 mmand a height of 8 mm.

14.2.2 singturnsphere.FEM

This model includes the smplified model of the field coil (only one big turn) and spheres with
radii of 2.5, 3.65, and 5length units.

14.2.3 singturnfsphere.FEM

This model includes the smplified model of afield coil (only one big thin turn) at alarger
distance and gphereswith radii of 2.5, 3.65and5 length units.

14.2.4 cylin der.FEM
This model includes the above describedcylinder and the detailed modd of thefield coil (4x24

turns) used in the experimentd setup.

14.2.5 sphere.FEM
This model includes the detail ed coil model and threespheres (radius of 2.5, 3.6 mm, and

5 cm) for the sphericd Cu and Al samples. Furthermore, it has been used to compare the

solution of femme with the ardlytic result for the eddy currentsin a solid Fe sphere [7].
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14.2.6 miniturnsphere.FEM

This model includes the smplified model of afield coil (only one small thin turn) at a short

distance

14.2.7 spheref.FEM

Thismodel isthe same as sphere.FEM , but the radius of theboundary, where asymptotic
boundary conditions are applied, is doubled.



15 Appendix

15.1 Mathematica package sphere.nb
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15.2 David Meeker, Finite Element Method Magnetics. User’'s Manual

Thisisthe manual for David Meeker’s FE padkage [3].
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