next up previous contents
Next: Program structure Up: The finite difference program Previous: The finite difference program   Contents

Subsections

Dimensionless equations

For the implementation of the finite difference model all physical quantities have been converted to dimensionless values.

The magnetization vectors $\bf m$ of the computational cells are dimensionless unit vectors

\begin{displaymath}
\mathbf{m}=\mathbf{M}/M_\mathrm{s} \quad.
\end{displaymath}

The magnetic field $\bf H$ is converted by

\begin{displaymath}
\mathbf{h}=\frac{\mathbf{H}}{M_\mathrm{s}}
\end{displaymath}

and the time is rescaled by

\begin{displaymath}
t'=t M_\mathrm{s} \gamma
\end{displaymath}

where $\gamma=2.210173\times 10^{5} \frac{\mathrm{m}}{\mathrm{As}}$ is the gyromagnetic ratio.

Thus, the Landau-Lifshitz-Gilbert equation ([*]) can be rewritten as

\begin{displaymath}
\frac{d \bf m}{dt'} = -\mathbf{m}\times\mathbf{h} -
\alpha \mathbf{m}\times(\mathbf{m}\times\mathbf{h}) \quad.
\end{displaymath}

The contributions to the local magnetic field are rescaled by the material constants.

Anisotropy field


\begin{displaymath}
\mathbf{h}_\mathrm{ani}=k \mathbf{a}(\mathbf{m} \cdot \mathbf{a})\quad,\qquad
k=\frac{2 K_1}{\mu_0 M_\mathrm{s}^2}
\end{displaymath}

Exchange field


\begin{displaymath}
\mathbf{h}_\mathrm{exch}=\sum^{NN}_j a \mathbf{m}_j\quad,\qquad
a=\frac{2 A}{\Delta x^2 M_\mathrm{s}^2}
\end{displaymath}

Dipole field


\begin{displaymath}
\mathbf{h}_\mathrm{dip}=-\frac{1}{4\pi}
\sum_j{}' \frac{\m...
...r}_j)}{r_j^5}\quad,\qquad
\mathbf{r}_j=\mathbf{R}_j/ \Delta x
\end{displaymath}

Thermal field


\begin{displaymath}
\mathbf{h}_\mathrm{th}=
\eta
\sqrt{
2 \frac{\alpha}{1+\alpha^2}
\frac{k_B T}{\Delta x^3 M^2_\mathrm{s} \Delta t'}
}
\end{displaymath}

$\eta$ denotes a standard Gaussian stochastic process with mean zero and variance 1.


next up previous contents
Next: Program structure Up: The finite difference program Previous: The finite difference program   Contents
Werner Scholz 2000-05-16