next up previous contents
Next: 8.3.2 Heun scheme Up: 8.3 Numerical integration Previous: 8.3 Numerical integration   Contents

8.3.1 Milshtein scheme

The Milshtein scheme ([*]) for the stochastic Landau-Lifshitz equation ([*]) is implemented as

$\displaystyle M_i(t+\Delta t)$ $\textstyle =$ $\displaystyle M_i(t) +$  
    $\displaystyle \Biggl[-\gamma'
(
\mathbf{M} \times (\mathbf{H}_\mathrm{eff} + \mathbf{H}_\mathrm{th})
)$  
    $\displaystyle -\frac{\alpha \gamma'}{M_\mathrm{s}}
\mathbf{M} \times
(
\mathbf{...
...times (\mathbf{H}_\mathrm{eff} + \mathbf{H}_\mathrm{th})
)
\Biggr]_i
\Delta t +$  
    $\displaystyle \gamma'^2 (1+\alpha^2) M_i (H_{\mathrm{th},i} \Delta t)^2
\quad,$ (8.1)

where the thermal field ([*], [*], [*]) is a Gaussian process
\begin{displaymath}
H_{\mathrm{th},i}=
\eta
\sqrt{
2 \frac{\alpha}{1+\alpha^2}
\frac{k_B T}{\mu_0\gamma' v M_\mathrm{s}\Delta t}
}
\end{displaymath} (8.2)

with a Gaussian random variable $\eta$. $v$ is the discretization volume of the computational cells. In the finite difference model it is the volume of a cubic computational cell and in the finite element model it is the volume of the finite element.



Werner Scholz 2000-05-16