 
 
 
 
 
 
 
  
The Fokker-Planck equation, which describes the time evolution of the nonequilibrium probability distribution 
 of a set of Langevin equations like (
 of a set of Langevin equations like (![[*]](../icons/crossref.gif) ), in the Stratonovich interpretation is given by [39]
), in the Stratonovich interpretation is given by [39]
![[*]](../icons/crossref.gif) ). We can transform it to a continuity equation for the probability distribution by taking the
). We can transform it to a continuity equation for the probability distribution by taking the  derivatives of the second term on the right-hand side
 derivatives of the second term on the right-hand side
![[*]](../icons/crossref.gif) ) we find
) we find
|  |  |  | |
|  |  | (6.25) | 
|  |  | ![$\displaystyle \left[
-\gamma'\varepsilon _{ijk} M_j
+\frac{\alpha \gamma'}{M_\m...
...delta_{ik}M^2)
\right]
\left(
-2\frac{\alpha \gamma'}{M_\mathrm{s}} M_k
\right)$](img332.gif) | |
|  |  | ||
|  |  | (6.26) | 
We find, that the second term on the right hand side of (![[*]](../icons/crossref.gif) ) vanishes identically. For the third term we find
) vanishes identically. For the third term we find
|  |  | ![$\displaystyle \gamma'^2
\Biggl[
-\varepsilon _{ilk} M_l
-\frac{\alpha}{M_\mathrm{s}}
(M_i M_k - \delta_{ik}M^2)
\Biggr] \cdot$](img335.gif) | |
| ![$\displaystyle \quad \,\, \Biggl[
-\varepsilon _{jpk} M_p
-\frac{\alpha}{M_\mathrm{s}}
(M_j M_k - \delta_{jk}M^2)
\Biggr]
\frac{\partial P}{\partial M_j}$](img336.gif) | |||
|  |  | ||
|  | |||
| ![$\displaystyle +\frac{\alpha^2}{M^2_\mathrm{s}}
\left(
M^4 \delta_{ik}\delta_{jk...
...delta_{ik}M_j M_k)+
M_i M_j M^2
\right)
\Biggr]
\frac{\partial P}{\partial M_j}$](img339.gif) | |||
|  |  | ||
| ![$\displaystyle \quad \quad +\frac{\alpha^2}{M^2_\mathrm{s}}
\left(
M^4\delta_{ij}-M^2 M_i M_j
\right)
\Biggr]
\frac{\partial P}{\partial M_j}$](img341.gif) | |||
|  | ![$\displaystyle \gamma'^2
\left[
(\alpha^2+1)(M^2 \delta_{ij}-M_i M_j)
\frac{\partial P}{\partial M_j}
\right]$](img342.gif) | ||
|  | ![$\displaystyle -\gamma'^2 (\alpha^2+1)
\left[
\mathbf{M} \times
\left(
\mathbf{M} \times \frac{\partial P}{\partial M_j}
\right)
\right]_i \quad.$](img343.gif) | (6.27) | 
Our result for the Fokker-Planck equation is
 is the nonequilibrium probability distribution for
 is the nonequilibrium probability distribution for  at time
 at time  , and
, and 
 stands for the divergence operator
 stands for the divergence operator
 
Finally, we have to ensure, that the stationary properties of the stochastic Landau-Lifshitz equation (![[*]](../icons/crossref.gif) ), supplemented by the statistical properties of the thermal field (
), supplemented by the statistical properties of the thermal field (![[*]](../icons/crossref.gif) ) and (
) and (![[*]](../icons/crossref.gif) ), coincide with the appropriate thermal-equilibrium properties. Therefore, the stationary solution of the Fokker-Planck equation
), coincide with the appropriate thermal-equilibrium properties. Therefore, the stationary solution of the Fokker-Planck equation  , for which
, for which
 
 
 denotes the discretization volume (the volume of a computational cell) we find
 denotes the discretization volume (the volume of a computational cell) we find
 
| ![$\displaystyle \left[
\frac{\partial}{\partial \mathbf{M}} \cdot
\left(
\mathbf{M} \times \frac{\partial P_0}{\partial \mathbf{M}}
\right)
\right]_i$](img356.gif) |  | ||
|  |  |  | |
|  |  | ||
|  |  | (6.31) | 
![[*]](../icons/crossref.gif) ) vanishes.
) vanishes.
Thus, the Fokker-Planck equation with the stationary solution  reads
 reads
![\begin{displaymath}
0=\Biggl[
-\frac{\alpha \gamma'}{M_\mathrm{s}}
\mathbf{M}...
...es \beta \mu_0 v \mathbf{H}_\mathrm{eff} P_0
\right)
\Biggr]
\end{displaymath}](img360.gif) 
 
![[*]](../icons/crossref.gif) ) we arrive at
) we arrive at
![[*]](../icons/crossref.gif) ) and determines the variance of the thermal field.
) and determines the variance of the thermal field.
 
 
 
 
 
 
