next up previous contents
Next: 7. Numerical time integration Up: 6. Stochastic calculus Previous: 6.4.2 Stratonovich-Taylor expansion   Contents

6.5 The Fokker-Planck equation

The Fokker-Planck equation, which describes the time evolution of the nonequilibrium probability distribution $P(\mathbf{M}, t)$ of a set of Langevin equations like ([*]), in the Stratonovich interpretation is given by [39]

\begin{displaymath}
\frac{\partial P}{\partial t} =
-\frac{\partial}{\partial ...
...j}
\left[
\left(
D B_{ik}B_{jk}
\right)
P
\right] \quad,
\end{displaymath} (6.22)

where Stratonovich calculus has been used to treat the multiplicative fluctuating terms in ([*]). We can transform it to a continuity equation for the probability distribution by taking the $M_j$ derivatives of the second term on the right-hand side
\begin{displaymath}
\frac{\partial P}{\partial t} =
-\frac{\partial}{\partial ...
...B_{jk}\frac{\partial}{\partial M_j}
\right) P
\right] \quad.
\end{displaymath} (6.23)

On using expression ([*]) we find
\begin{displaymath}
\frac{\partial B_{ik}}{\partial M_j}=
-\gamma'\varepsilon ...
...s}}
(\delta_{ij}M_k + \delta_{jk}M_i - 2\delta{ik}M_j) \quad.
\end{displaymath} (6.24)

Thus,
$\displaystyle \frac{\partial B_{jk}}{\partial M_j}$ $\textstyle =$ $\displaystyle -\gamma'\varepsilon _{jjk}
-\frac{\alpha \gamma'}{M_\mathrm{s}}
(\delta_{jj}M_k + \delta_{jk}M_j - 2 M_k)$  
  $\textstyle =$ $\displaystyle -\frac{\alpha \gamma'}{M_\mathrm{s}} 2 M_k$ (6.25)

and
$\displaystyle B_{ik}\frac{\partial B_{jk}}{\partial M_j}$ $\textstyle =$ $\displaystyle \left[
-\gamma'\varepsilon _{ijk} M_j
+\frac{\alpha \gamma'}{M_\m...
...delta_{ik}M^2)
\right]
\left(
-2\frac{\alpha \gamma'}{M_\mathrm{s}} M_k
\right)$  
  $\textstyle =$ $\displaystyle \frac{\alpha \gamma'}{M_\mathrm{s}}
(M_i M_k M_k- \delta_{ik}M^2 M_k)
\left(
-2\frac{\alpha \gamma'}{M_\mathrm{s}}
\right)$  
  $\textstyle =$ $\displaystyle 0 \quad.$ (6.26)

We find, that the second term on the right hand side of ([*]) vanishes identically. For the third term we find

$\displaystyle B_{ik}B_{jk}\frac{\partial P}{\partial M_j}$ $\textstyle =$ $\displaystyle \gamma'^2
\Biggl[
-\varepsilon _{ilk} M_l
-\frac{\alpha}{M_\mathrm{s}}
(M_i M_k - \delta_{ik}M^2)
\Biggr] \cdot$  
    $\displaystyle \quad \,\, \Biggl[
-\varepsilon _{jpk} M_p
-\frac{\alpha}{M_\mathrm{s}}
(M_j M_k - \delta_{jk}M^2)
\Biggr]
\frac{\partial P}{\partial M_j}$  
  $\textstyle =$ $\displaystyle \gamma'^2
\Biggl[
(\delta_{ij}\delta_{lp}-\delta_{ip}\delta_{jl}) M_l M_p$  
    $\displaystyle +\frac{\alpha}{M_\mathrm{s}}
\left(
-M^2 \varepsilon _{jpi}M_p+\v...
...}M_i M_p M_k - M^2 \varepsilon _{ilj}M_l
+\varepsilon _{ilk}M_l M_j M_k
\right)$  
    $\displaystyle +\frac{\alpha^2}{M^2_\mathrm{s}}
\left(
M^4 \delta_{ik}\delta_{jk...
...delta_{ik}M_j M_k)+
M_i M_j M^2
\right)
\Biggr]
\frac{\partial P}{\partial M_j}$  
  $\textstyle =$ $\displaystyle \gamma'^2
\Biggl[
\delta_{ij}M^2-M_i M_j +
\frac{\alpha}{M_\mathrm{s}}
\left(
-M^2 \varepsilon _{jpi} M_p -M^2 \varepsilon _{ilj} M_l
\right)$  
    $\displaystyle \quad \quad +\frac{\alpha^2}{M^2_\mathrm{s}}
\left(
M^4\delta_{ij}-M^2 M_i M_j
\right)
\Biggr]
\frac{\partial P}{\partial M_j}$  
  $\textstyle =$ $\displaystyle \gamma'^2
\left[
(\alpha^2+1)(M^2 \delta_{ij}-M_i M_j)
\frac{\partial P}{\partial M_j}
\right]$  
  $\textstyle =$ $\displaystyle -\gamma'^2 (\alpha^2+1)
\left[
\mathbf{M} \times
\left(
\mathbf{M} \times \frac{\partial P}{\partial M_j}
\right)
\right]_i \quad.$ (6.27)

Our result for the Fokker-Planck equation is

$\displaystyle \frac{\partial P}{\partial t}$ $\textstyle =$ $\displaystyle -\frac{\partial}{\partial \mathbf{M}} \cdot
\Biggl\{
\Biggl[
-\ga...
...a'}{M_\mathrm{s}}
\mathbf{M} \times (\mathbf{M} \times \mathbf{H}_\mathrm{eff})$  
    $\displaystyle + \frac{1}{2 \tau_N} \mathbf{M} \times
\left(
\mathbf{M} \times \frac{\partial}{\partial \mathbf{M}}
\right)
\Biggr] P
\Biggr\} \quad,$ (6.28)

where $P(\mathbf{M}, t)$ is the nonequilibrium probability distribution for $\mathbf{M}$ at time $t$, and $\frac{\partial}{\partial \mathbf{M}}\cdot$ stands for the divergence operator

\begin{displaymath}
\frac{\partial}{\partial \mathbf{M}} \cdot \mathbf{A} =
\frac{\partial A_i}{\partial M_i}
\end{displaymath}

and
\begin{displaymath}
\frac{1}{\tau_N}=2 D \gamma'^2 (1+\alpha^2)
\end{displaymath} (6.29)

is the Néel (free-diffusion) time.

Finally, we have to ensure, that the stationary properties of the stochastic Landau-Lifshitz equation ([*]), supplemented by the statistical properties of the thermal field ([*]) and ([*]), coincide with the appropriate thermal-equilibrium properties. Therefore, the stationary solution of the Fokker-Planck equation $P_0$, for which

\begin{displaymath}
\partial P_0/\partial t=0
\end{displaymath}

is forced to be the Boltzmann distribution
\begin{displaymath}
P_0(\mathbf{M}) \propto \exp(-\beta \mathcal H(\mathbf{M})) \quad.
\end{displaymath} (6.30)

Since

\begin{displaymath}
\mu_0 v \mathbf{H}_\mathrm{eff}=
-\frac{\partial \mathcal H}{\partial \mathbf{M}}
\quad,
\end{displaymath}

where $v$ denotes the discretization volume (the volume of a computational cell) we find

\begin{displaymath}
\frac{\partial P_0}{\partial \mathbf{M}}=
\beta\mu_0 v \mathbf{H}_\mathrm{eff} P_0
\quad.
\end{displaymath}

Hence,
$\displaystyle \left[
\frac{\partial}{\partial \mathbf{M}} \cdot
\left(
\mathbf{M} \times \frac{\partial P_0}{\partial \mathbf{M}}
\right)
\right]_i$ $\textstyle =$    
$\displaystyle \partial_{M_i}(\varepsilon _{ijk} M_j \partial_{M_k} P_0)$ $\textstyle =$ $\displaystyle \varepsilon _{ijk}
(
\delta_{ij}\partial_{M_k} P_0 +
M_j \partial_{M_i} \partial_{M_k} P_0
) =$  
  $\textstyle =$ $\displaystyle \varepsilon _{iik} \partial_{M_k} P_0 +
M_j \varepsilon _{ijk} \partial_{M_i} \partial_{M_k} P_0$  
  $\textstyle =$ $\displaystyle 0$ (6.31)

and the first term on the right hand side of the Fokker-Planck equation ([*]) vanishes.

Thus, the Fokker-Planck equation with the stationary solution $P_0$ reads

\begin{displaymath}
0=\Biggl[
-\frac{\alpha \gamma'}{M_\mathrm{s}}
\mathbf{M}...
...es \beta \mu_0 v \mathbf{H}_\mathrm{eff} P_0
\right)
\Biggr]
\end{displaymath}

from which we find

\begin{displaymath}
\tau_N=\frac{1}{\alpha}\frac{\mu_0 v M}{2 \gamma' k_B T} \quad.
\end{displaymath}

By comparison with ([*]) we arrive at
\begin{displaymath}
D=\frac{\alpha}{1+\alpha^2}\frac{k_B T}{\mu_0 v \gamma' M} \quad,
\end{displaymath} (6.32)

which was defined in ([*]) and determines the variance of the thermal field.


next up previous contents
Next: 7. Numerical time integration Up: 6. Stochastic calculus Previous: 6.4.2 Stratonovich-Taylor expansion   Contents
Werner Scholz 2000-05-16