next up previous contents
Next: 2.1.4 Zeeman energy Up: 2.1 Thermodynamic relations Previous: 2.1.2 Magnetocrystalline anisotropy energy   Contents

2.1.3 Magnetostatic energy

The origin of domains still cannot be explained by the two energy terms above. Another contribution comes from the magnetostatic self-energy, which originates from the classical interactions between magnetic dipoles. For a continuous material it is described by Maxwell's equations

$\displaystyle \mathrm{div~}\mathbf{D}$ $\textstyle =$ $\displaystyle \rho$ (2.6)
$\displaystyle \mathrm{div~}\mathbf{B}$ $\textstyle =$ $\displaystyle 0$ (2.7)
$\displaystyle \mathrm{curl~}\mathbf{E}$ $\textstyle =$ $\displaystyle -\frac{\partial \mathbf{B} }{dt}$ (2.8)
$\displaystyle \mathrm{curl~}\mathbf{H}$ $\textstyle =$ $\displaystyle \frac{\partial \mathbf{D}}{dt} + \mathbf{j} \quad.$ (2.9)

In our magnetostatic problem, we do not have any electric fields $\mathbf{E}$ or free currents $\mathbf{j}$. Thus, there are two remaining equations
$\displaystyle \mathrm{div~}\mathbf{B}$ $\textstyle =$ $\displaystyle 0$ (2.10)
$\displaystyle \mathrm{curl~}\mathbf{H}$ $\textstyle =$ $\displaystyle 0 \quad.$ (2.11)

The magnetic induction $\mathbf{B}$ is given by $\mathbf{B}=\mu_0 (\mathbf{H} + \mathbf{M})$. A general solution of ([*]) is given by
\begin{displaymath}
\mathbf{H}=-\nabla U \quad,
\end{displaymath} (2.12)

where $U$ is the magnetic scalar potential. Inserting the expressions for $\mathbf{B}$ and $\mathbf{H}$ in ([*]) gives
\begin{displaymath}
\Delta U_\mathrm{in} = \mathrm{div~}\mathbf{M}
\end{displaymath} (2.13)

inside magnetic bodies and
\begin{displaymath}
\Delta U_\mathrm{out} = 0
\end{displaymath} (2.14)

outside in air or vacuum.

These equations have to be solved with the boundary conditions

\begin{displaymath}
U_\mathrm{in}=U_\mathrm{out}, \qquad
\frac{\partial U_\mat...
... U_\mathrm{out}}{\partial n}=\mathbf{M} \cdot \mathbf{n} \quad
\end{displaymath} (2.15)

on the surface of the magnet to obtain $U$ and derive from it $\mathbf{H}$. $\mathbf{n}$ is the unit normal to the magnetic body, taken to be positive in outward direction.

In micromagnetics, the magnetization distribution $\mathbf{M}(\mathbf{r})$ is given. With relation ([*]) the magnetic scalar potential can be calculated from the magnetization distribution. The demagnetizing field $\mathbf{H}_\mathrm{ms}$ is then obtained by using ([*]).

Finally the magnetostatic energy is given by

\begin{displaymath}
E_\mathrm{ms}=-\frac{1}{2} \mu_0
\int_V \mathbf{M} \cdot \mathbf{H}_\mathrm{ms} \,d{^3r}\, \quad.
\end{displaymath}


next up previous contents
Next: 2.1.4 Zeeman energy Up: 2.1 Thermodynamic relations Previous: 2.1.2 Magnetocrystalline anisotropy energy   Contents
Werner Scholz 2000-05-16